Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нестационарные методы отклика

    Нестационарные методы отклика [c.145]

    В этой главе в основном излагаются методы определения коэффициентов продольного перемешивания в приближении однопараметрической диффузионной модели. Оценены преимущества и недостатки применяемых методов. Для нестационарных методов ввода трассера (импульсного и ступенчатого) рассматриваются статистические методы решения обратных задач (определение коэффициента продольного перемешивания по экспериментально найденной кривой отклика). Приводятся формулы и графики для расчета в колоннах ограниченной высоты и в предельном случае Обсуждаются экспериментальные [c.147]


    Нестационарные методы ввода метящего вещества основаны на снятии кривой отклика, т. е. на измерении зависимости концентрации от времени в точке, отстоящей на расстоянии к от места ввода трассера. В основном применяются два нестационарных метода ввода метящего вещества - импульсный и ступенчатый. Обычно трассер вводится в среднюю часть колонны. Однако зто условие накладывает некоторое ограничение на проведение экспериментов и не является обязательным. Ниже рассматривается общий случай ввода трассера в любое сечение по высоте колонны. [c.153]

    Применительно к нестационарным методам особую трудность по сравнению со стационарной и квазистационарной методиками представляет решение так называемой обратной задачи, т. е. определение коэффициента продольного перемешивания по экспериментально полученной кривой отклика. Наиболее корректно применять для решения обратной задачи методы математической статистики. [c.153]

    В этой главе в основном излагаются методы определения коэффициентов продольного перемешивания Оа в приближении однопараметрической диффузионной модели. Оценены преимущества и недостатки применяемых методов. Для нестационарных методов ввода трассера (импульсного и ступенчатого) рассматриваются статистические методы решения обратных задач (определение коэффициента продольного перемешивания по экспериментально найденной кривой отклика). Приводятся формулы и графики для расчета Оа в колоннах ограниченной высоты и в предельном случае Н- оо. Обсуждаются экспериментальные работы, в которых дается обоснование и оценка границ применимости диффузионной модели и приводятся формулы приближенных расчетов коэффициента продольного перемешивания по известным значениям фн-зико-химических, геометрических и режимных параметров аппарата. [c.145]

    Наибольшее распространение метод моментов получил при исследовании структуры потоков в аппаратах химической технологии. Известно, что гидродинамические характеристики (такие, например, как коэффициенты перемешивания) целесообразно определять в нестационарных режимах, исследуя отклики объекта на возмущения входных параметров, а тепломассообменные характеристики (такие, например, как коэффициенты тепло-и массопередачи) удобнее определять в стационарных условиях работы аппарата. [c.279]

    Асимптотический метод. При больших значениях х зависимость С от времени близка к экспоненциальной. В связи с этим в работе [32] предлагается метод определения Ре по тангенсу угла наклона прямой логарифма концентрации на хвосте кривой отклика. Этот метод, аналогичный методу регулярного режима в нестационарных задачах теплопроводности, получил дальнейшее развитие в работе [33]. [c.167]


    Исторически сложилось так, что типовые методы расчета процессов и аппаратов химической технологии, кинетики химических реакций и т. д. касались преимущественно только стационарных процессов. Когда стало интенсивно развиваться управление производственными процессами, выяснилось, что существенное значение имеют нестационарные состояния. В настоящее время установки не проектируются на основе данных об установившемся режиме с последующим добавлением контроля за процессом установки и системы управления ими должны проектироваться совместно. Разумеется, для анализа и диагностики неполадок может оказаться очень полезным отклик нестационарного процесса, если требуется быстро решить, есть неполадка или ее нет. [c.79]

    В практических исследованиях применяют, как правило, метод нестационарной подачи трассера, в соответствии с которым концентрацию метки потока изменяют на входе в аппарат изучаемой фазы по импульсному или ступенчатому закону. Коэффициент диффузии определяют путем сопоставления аналитического решения одномерного диффузионного уравнения с граничными и начальными условиями с экспериментальными кривыми отклика. Аналитическое решение диффузионного уравнения обычно представляют в виде суммы бесконечного ряда, поэтому для решения обратной задачи, т. е. определения параметров модели по известному решению (экспериментально полученной кривой отклика), следует воспользоваться стандартными методами асимптотическим, избранных точек, наименьших квадратов, моментов и др. Поскольку при импульсном вводе сокращается расход трассера и упрощается экспериментальная часть работы, рассмотрим расчетные формулы, разработанные для этого метода. Методы идентификации при ступенчатом вводе трассера подробно описаны во многих монографиях. Кроме того, несложно доказать, что при вводе трассера на вход аппарата и измерении его концентрации в потоке, выходящем из колонны, функции отклика на импульсное t) и ступенчатое F t) возмущения совпадают с плотностью и функцией распределения времени пребывания соответствующей фазы, т. е. (t)=F t). При этом для обработки результатов, полученных при ступенчатом вводе трассера, можно использовать те же формулы, что и в случае импульсной подачи. Расчетные формулы зависят от вида граничных условий. Наиболее распространены граничные условия П. Данквертса [c.143]

    Поскольку некоторые вольтамперометрические методы основаны на измерении отклика исследуемой системы на малосигнальное воздействие, целесообразно рассмотреть электрическую модель (эквивалентную электрическую схему) ячейки по отношению к малому переменному сигналу с учетом условий, которые были приняты для математической модели. При этом более подробно рассмотрим эквивалентную схему для стационарного электрода, имея в виду,, что она применима для нестационарных электродов в тех случаях, когда скорость изменения площади электрода много меньше скорости изменения переменного сигнала, а вкладом конвективной составляющей массопереноса по сравнению с диффузией можно пренебречь. [c.302]

    Результаты исследований состава поверхностных слоев, выполненных с привлечением различных физических методов диагностики, не оставляют сомнений в том, что СР сплавов сопровождается, как правило, значительными концентрационными изменениями в твердой фазе, которые, можно трактовать как диффузионную зону. Такие изменения способны решающим образом повлиять на характер кинетических ограничений процесса СР. Тем не менее исследование кинетических особенностей растворения сплавов, в частности начальных стадий, с помощью физических методов затруднено. Основным недостатком указанных методов является невысокое быстродействие, а также необходимость прерывания процесса СР и извлечения образцов из раствора для проведения анализа. За это время в образцах сплава могут произойти необратимые изменения, чему способствует и воздействие зондирующего излучения. В. определенной степени указан.-ных недостатков лишены нестационарные электрохимические методы. Наиболее перспективными среди них являются хроноамперо- и хронопотенциометрия [66]. Оба метода объединяет подход к изучению явления резко изменяется ток или потенциал сплава и наблюдается отклик (релаксация) системы на возмущение. Теория любого релаксационного метода основывается на какой-либо модели массопереноса компонентов в сплаве. Поэтому соответствие экспериментальных данных теоретически ожидаемым служит непосредственным подтверждением справедливости выбранных модельных представлений. [c.47]


Смотреть страницы где упоминается термин Нестационарные методы отклика: [c.213]   
Смотреть главы в:

Хроматография Том 1 -> Нестационарные методы отклика




ПОИСК





Смотрите так же термины и статьи:

Отклик

Ток нестационарный



© 2025 chem21.info Реклама на сайте