Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионные явления в зоне контакта

    Существует ряд теорий, объясняющих явления адгезии. Первоначально были выдвинуты адсорбционная и термодинамическая теории адгезии [1], которые объясняли явления адгезии с той же научной точки зрения, что и адгезию жидкостей. Позднее появились электрическая теория адгезии, выдвинутая Б. В. Дерягиным и Н. А. Кротовой [2], и диффузионная теория адгезии, впервые предложенная Иозефовичем и Марком [3] и разработанная С. С. Воюцким с сотрудниками [4]. На первом этапе развития проблемы адгезии эти теории, казалось, противоречили друг другу. Так, например, на основании адсорбционной теории адгезия объясняется различными типами химических и молекулярных взаимодействий, могущих иметь место на границе раздела адгезив—подкладка. Диффузионная теория предполагает наличие диффузионных процессов в зоне контакта. Экспериментальным подтверждением этой теории служат в ряде случаев результаты исследований температурных и временных зависимостей адгезии. В электрической теории адгезии подчеркивается, что процесс нарушения адгезионной связи в обычных условиях протекает необратимо, благодаря чему положения термодинамической теории адгезии, разработанные для жидкостей, становятся неприемлемыми. Таким образом, на первый план выдвигается вопрос выяснения природы адгезионных сил и характера изменения их в процессе отрыва. [c.497]


    Диффузионные явления в зоне контакта [c.126]

    Изучение диффузионных явлений в системе адгезив — субстрат не исчерпывается определением коэффициентов диффузии. В ряде случаев представляет интерес исследовать зону контакта, [c.133]

    Интерес, проявляемый в последние годы к диффузионным явлениям в зоне контакта полимеров, связан с представлениями о сегментальной растворимости, развиваемыми Кулезневым [44, 57—60]. Сущность этих представлений сводится к тому, что на границе раздела двух полимеров сегменты макромолекул способны образовывать равновесный раствор друг в друге, представляющий собой диффузный слой. Дело в том, что многие мономеры неограниченно смешиваются друг с другом. Увеличение взаимной растворимости полимеров происходит при уменьшении их молекулярной массы и особенно сильно возрастает в той области молекулярных масс, которая соизмерима с сегментом макромолекулы [59, 60]. На основании этих соображений в работе [57] сделан принципиальный вывод о том, что большинство полимеров, несовместимых на уровне макромолекул, оказываются совместимыми на уровне сегментов. Сегментальное растворение происходит достаточно быстро (доли секунды [c.22]

    Вопрос обеспечения хорошего контакта между фазами в реакторах для газофазных каталитических процессов не является главным, так как катализаторы обычно обладают огромной поверхностью, а сопротивление внешней диффузии в газовой фазе чаще всего невелико. Таким образом, хороший контакт между газом и катализатором достигается без особого труда при обычных скоростях газовых потоков в реакционных аппаратах. Правда, на поверхности катализатора возникают значительные диффузионные сопротивления, которые необходимо учитывать, но это относится уже к области расчета реакционных объемов, о чем будет сказано дальше. Следует, однако, иметь в виду, что во многих аппаратах подвод газа к их рабочему сечению осуществляется через относительно небольшие входные отверстия. Если не принять соответствующих мер, это может привести к значительной неравномерности поля скоростей в объеме, заполненном катализатором. Результатом будет неравномерность работы отдельных участков реакционной зоны и, как следствие, выход из оптимального режима, нарушение теплообмена, снижение производительности и общее ухудшение показателей процесса. Для предотвращения этих нежелательных явлений необходимо обеспечить равномерное распределение потока газа по рабочему сечению аппарата, что может быть достигнуто двумя основными способами  [c.113]


    Аналогично большинство законов, используемых для описания возникновения новой фазы, можно распространить на случай, когда зародышеобразование обусловлено диффузионными процессами. Что же касается роста новой фазы, то для обеспечения возможности проведения математического анализа снова необходимо предположить, что скорость продвижения фронта реакции остается постоянной, если условия эксперимента фиксированы. Это постоянство скорости отнюдь не является исключительной особенностью только таких реакций, которые протекают на поверхности раздела. В принципе подобное явление можно наблюдать и в некоторых превращениях, в которых играют роль диффузионные процессы. Таким образом, полученные выводы можно применить к разделению твердого реагента на два продукта различного состава, если размеры каждой области увеличиваются с постоянной скоростью. Можно также представить себе некоторую реакцию (разложения, травления жидкостью пли газом), протекающую в порошкообразной массе и распространяющуюся от зерна к зерну при простом контакте. Каждый зародыш в результате зародышеобразования на поверхности или в глубине зерна через некоторое время будет окружен сплошной реакционной зоной, состоящей из различных зерен, косвенно инициированных зародышем. Реакционная зона ограничена приблизительно сферическим фронтом реакции с центром в месте нахождения данного зародыша. Эта модель формально соответствует известной модели полиморфного превращения компактного образца, когда процесс начинается в точке объема реагента. Следовательно, процесс можно описать аналогичными формулами. [c.278]

    Кроме диффузионного насыщения углеродом со стороны кокса в биметалле происходит перераспределение углерода на границе основного и плакируюп1его металла, усиливающееся, видимо, благодаря действию циклических нафузок [58]. Это явление обнаружено при металлофафиче-ских исследованиях и подтверждается результатами замера микротвердости в зоне контакта металла (рис. 2.26). Возникновение науглероженного слоя связано с диффузией углерода из состава основного металла в плакирующий [66]. Одновременно в основном металле образуется обезуглеро-женная зона. [c.117]

    Диффузионные явления при формировании адгезионного контакта весьма разнообразны. В тех случаях, когда оба компонента адгезионного соединения — полимеры, не исключена односторонняя или взаимная диффузия сегментов макромолекул, фрагментов или целых цепей через границу раздела фаз и формирование переходной зоны. Эти случаи рассматривались в работах Воюцкого с сотр., а также в концепции Кулезнева о сегментальной растворимости (см. гл. 1). Кроме того, иногда существенное значение приобретает диффузия низкомолекулярных компонентов. Например, физико-механические свойства латексных адгезивов существенно зависят от того, в контакте с какой резиной эти адгезивы находятся [7, 71]. Это объясняется диффузией низкомолекулярных ингредиентов, в частности серы. Как следует из данных, приведенных в табл. 2.3, модуль (при 100%-ном удлинении) и сопротивление разрыву пленок на основе ви-нилпиридинового и бутадиенового карбоксилсодержащего латексов, свулканизованных в контакте с различными подложками — резинами на основе натурального каучука (НК) и бутадиенового (СКВ), — существенно различаются. Соответственно различается и содержание [c.89]

    Так, рассматривая генезис представлений о природе адгезии полимеров, нетрудно видеть, что механическая концепция отдает предпочтение влиянию микрорельефа поверхности субстрата [1], адсорбционная-сорбции адгезива [2], химическая-образованию валентных межфазных связей [3], диффузионная - совместимости полимеров в зоне адгезионного контакта [4], реологическая-повыщению прочности граничных слоев контактирующих полимеров [5], микрореологическая-затеканию адгезива в микродефекты поверхности субстрата [6], электрическая-сводит проблему к возникновению двойного электрического слоя на приведенных в контакт поверхностях [7], электрорелаксационная-при этом принимает во внимание специфику релаксационных явлений в полимерах [8], молекулярная, по мнению ее авторов, представляет собой развитие адсорбционной концепции [9]. Видимо, наиболее обосновано мнение [10], согласно которому множество разнообразных, иногда взаимоисключающих концепций свидетельствует об отсутствии единой физически непротиворечивой теории. [c.4]

    Одной из наиболее рзспространепных на сегодняшний день теорий, объясняюш,ей механизм слеживания, является кристаллизационная теория. В соответствии с ней на поверхности зерен удобрений образуется жидкая пленка их насыщенного раствора и мениски в зоне касания гранул. Изменения температуры и влажности окружающего воздуха могут вызвать пересыщение раствора, приводящее к выпадению кристаллов между зернами, которые служат основой фазовых контактов, приводящих к слеживаемости. Этот механизм наглядно объясняет хорошо известное из практики явление увеличения слеживаемости удобрений с повышением их влажности. Однако по мнению И. М. Кувшинникова [237, с. 139], имеется ряд экспериментальных данных, не подтверждающих наличие кристаллизационного механизма слеживаемости. Более вероятным он считает наличие диффузионного механизма. Слеживаемость при этом рассматривается как термодинамический процесс в дисперсной структуре, направленный на совершенствование последней, т. е. на образование в идеале монокристалла, обладающего минимумом энергии. [c.169]



Смотреть страницы где упоминается термин Диффузионные явления в зоне контакта: [c.151]    [c.209]    [c.247]   
Смотреть главы в:

Основы адгезии полимеров -> Диффузионные явления в зоне контакта




ПОИСК





Смотрите так же термины и статьи:

Диффузионные явления



© 2025 chem21.info Реклама на сайте