Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен при ламинарном течении жидкости в трубе

    С. Теплообмен при ламинарном течении. Задачи, связанные с гидродинамикой и теплообменом при ламинарном течении, являлись предметом аналитических исследований в течение многих лет. В [1] собраны имеющиеся в литературе аналитические решения задач теплообмена при ламинарной вынужденной- конвекции жидкости в круглых и некруглых трубах при различных граничных условиях. Поэтому в последующих разделах представлены только наиболее интересные с инженерной точки зрения решения. [c.234]


    Конвективный перенос теплоты происходит вместе с переносом вещества при конвекции в газе и жидкости. При ламинарном течении жидкости по трубе и постоянной температуре стенки теплообмен аппроксимируется формулами (с1 и Г — диаметр и длина трубы)  [c.261]

    Теплоотдача без изменения агрегатного состояния теплоносителей. Рассмотрим сначала теплоотдачу при течении жидкости в трубах. При вынужденном течении жидкости внутри трубы различают два режима течения ламинарный и турбулентный. При ламинарном течении перенос теплоты от одного слоя жидкости к другому в направлении нормали к стенке происходит благодаря теплопроводности, В то же время каждый слой имеет в общем случае различную скорость продольного движения. Поэтому наряду с поперечным переносом теплоты вследствие теплоп1Юводности происходит также конвективный перенос теплоты в продольном направлении. В силу этого теплообмен при ламинарном режиме течения зависит от гидродинамической картины движения. [c.184]

    Перейдем к рассмотрению экспериментов. Нам уже известны свойства плазмы с точностью до порядка величины. При определении термодинамических свойств возможная точность расчета не выходит за пределы 2%. При расчетах коэффициентов переноса точность много хуже. Кроме того, чтобы избавиться от практически непреодолимых математических трудностей, мы ввели при расчетах довольно грубые допущения, обычно принимаемые и в других работах. Мы усредняли многие непостоянные величины, причем это делалось так, что оценить ошибки в конечных результатах невозможно. Возможна ошибка в 2 раза, хотя многие считают используемую нами теорию не такой уж плохой. В какой степени положение может быть исправлено экспериментом Если бы мы имели материал, способный работать при 20 000 К, то все эксперименты были бы чрезвычайно просты. Измерив градиент давления при изотермическом ламинарном течении плазмы в трубе, можно определить вязкость. Эксперименты по теплообмену позволили бы определить теплопроводность и электропроводность, измеряя другие параметры. Из-за отсутствия необходимых для этого высокотемпературных материалов мы воспользуемся другим методом, который, возможно, позволит нам использовать наш теоретический аппарат для предсказания результатов эксперимента. В этом методе в сущности нет ничего нового. Еще до постановки экспериментов по определению вязкости обычных жидкостей (например воды) была принята гипотеза о прямой пропорциональности величины касательных напряжений градиенту скорости. Затем на основании этой гипотезы была получена теоретическая формула, описывающая ламинарное течение в трубе. Совпадение полученных теоретических результатов с экспериментом позволило считать вязкость физической константой, имеющей вполне определенный смысл. Этим же путем следовало бы идти и в случае плазмы, но отсутствие подходящих конструкционных материалов не позволяет осуществить изотермические условия. Тем не менее мы попытаемся воспользоваться этим же методом, ставя простые эксперименты, результаты которых можно предсказать теоретически, а затем попытаемся скорректировать теорию. Оказывается, что лучше всего использовать обычную струю плазмы, получаемую в определенных условиях. В струе плазмы, вытекающей из сопла плазматрона, температура очень сильно изменяется и по длине и по сечению струи. Если же взять трубу и разместить электроды на ее торцах, то осевого градиента температуры быть не должно. Следовательно, задача из двумерной превращается в одномерную. Для получения стационарной дуги необходимо охлаждать стенки трубы водой, поддерживая их температуру постоянной. Для плазмы при атмосферном давлении трудно придумать эксперимент проще. Теперь надо решить, какое вещество использовать в качестве рабочего тела. Конечно, для наших целей не годятся воздух, вода и даже водород, так как в водородной плазме содержится слишком много компонент На, Н, Н+ и е . Если не удастся достигнуть локального равновесия, то необходимо рассматривать по крайней мере четыре независимые группы уравнений с соответствующим числом соотношений для скорости реакций. Лучше с этой точки зрения применить гелий при 6 83 [c.83]


    В отличие от жидкостей, в которых тепло передается преимущественно конвекцией, основной механизм теплообмена жидких металлов — процесс теплопроводности. Теплопередача жидких металлов незначительно зависит от режима течения жидкости (т. е. от того, турбулентный он или ламинарный). Они также обладают незначительной кинематической вязкостью и низким парциальным давлением. Благодаря этим свойствам жидкие металлы нашли широкое применение в качестве теплоносителей теплообменных аппаратов ядерных реакторов, от которых необходимо отводить большое количество тепловой энергии. Хорошо известными уравнениями для определения теплообмена в трубах являются уравнение Лайона [c.158]

    Теплообмен при полностью развитом ламинарном течении жидкостей в трубах различной формы рассматривался во многих работах (см., например, [93, 129, 164]). Ниже изложены некоторые итоговые результаты для предельных чисел Нуссельта, соответствуюш,их области тепловой стабилизации потока, в случае больших чисел Пекле [c.133]

    При ламинарном течении жидкости в трубе, при передаче тепла в условиях естественной конвекции теплообмен значительно ухудшается, поэтому для его интенсификации, когда это возможно, поток жидкости стремятся турбулизовать. [c.116]

    В заключение рассмотрим задачу о теплообмене при ламинарном течении жидкости по трубе. Эта задача несколько выпадает из общего направления настоящего раздела, так как к ней не применимы методы теории пограничного слоя. Но при ее исследовании очень интересное освещение получает проблема автомодельности и подобия решения. По этому признаку ее целесообразно включить в круг рассмотрения именно здесь. [c.169]

    Труба с постоянной температурой на стенке. Исследуем теплообмен при ламинарном течении жидкости с параболическим профилем скорости в плоской трубе шириной 2/г. Введем прямоугольную систему координат X, , где ось X расположена на равном расстоянии от стенок трубы и направлена по потоку. Считаем, что на стенках трубы (при У = /г) поддерживается постоянная температура, равная при X < О и Т2 при X > 0. Ввиду симметрии задачи относительно оси X достаточно рассмотреть половину области О К /г. [c.131]

Рис. 3.14. Соотношения, характеризующие теплообмен при ламинарном режиме течения в трубе круглого сечения для трех граничных условий (7т , — средняя температура жидкости) [20]. Рис. 3.14. Соотношения, характеризующие теплообмен при ламинарном режиме течения в <a href="/info/1440129">трубе круглого сечения</a> для трех <a href="/info/25915">граничных условий</a> (7т , — <a href="/info/14207">средняя температура</a> жидкости) [20].
    Теплообмен при ламинарном течении неньютоновских жидкостей в трубах и каналах [c.252]

    При течении высоковязких жидкостей по трубам и каналам кожухотрубных теплообменников наиболее вероятным является ламинарный режим течения. Поэтому приведем необходимые для расчета данные о теплообмене при ламинарном течении вязкой жидкости в круглых трубах и плоских щелевых каналах. Такую задачу аналитически решали многие авторы, сделав при этом ряд упрощающих решений предпосылок. Достаточно подробные сведения по этому вопросу содержатся в работе Б. С. Петухова [181. [c.132]

    Доманский О.В., Консетов В.В. Теплообмен на начальных участках круглых труб и плоских каналов при ламинарном течении жидкостей // Тепло-и массообмен в неньютоновских жидкостях. М. Энергия, 1968. С. 146-156. [c.263]

    Показано, что вибрацня повер.хности улучшает теплообмен как прн ламинарном, так и при турбулентном режимах течения жидкостей в трубах [2]. Наибольшее увеличение коэффициентов теплоотдачи (до 200%) наблюдалось при ламинарном или переходном режиме течения в трубчатом теплообменнике с коицснтрическими трубами, внутренняя труба которо1о вибрировала в поперечном направлении и в прямоугольном канале с гибкой вибрирующей стороной. Сложность оборудования и относительно большие затраты энергии, ио-видимому, исключают этот метод из практического применения. [c.326]

    Значения tax и вых определяют экспериментально. По ним при известном давлении на входе и на выходе из трубы находят значения Лвк и йиых. Для измерения оых иримеияют смесительные устройства, теплоизолированные от окружающей среды. Наиболее эффективны смесители, состоящие из набора чередующихся по ходу потока дисков с центральными и периферийными отверстиями. Количество дисков, обеспечивающих полное перемешивание жидкости и выравнивание температуры, подбирают опытным путем. Для турбулентных течений обычно достаточно четырех-пяти дисков (см, рнс. 8.27). Для ламинарных течений степень перемешивания может зависеть от числа Re перед смесителем. Для жидкостей с переменной теплоемкостью, например, при сверхкритическом давлении необходимо учитывать падение давления в смесителе (для адиабатных условий можно считать, что в смесителе происходит дросселирование при ft= onst). По измеренной температуре и давлению за смесителем находят энтальпию, которую принимают за энтальпию на выходе из трубы Лвых. Температуру за смесителем измеряют термопарами, помещаемыми в металлические гильзы (капилляры). Спай термопары должен иметь хороший тепловой контакт с гильзой (часто их приваривают к гильзе). Для уменьшения погрешностей измерения, связанных с отводом теплоты по гильзе, принимают меры, улучшающие теплообмен потока с гильзой сужают проходное сечение для увеличения скорости пото-1са, развивают поверхность контакта гильзы с потоком в месте расположения спая, помещая на конце гильзы звездочки из металлов с большой теплопроводностью. [c.427]


    В работе [108] осуществлено аналогичное экспериментальное исследование с целью определить влияние естественной конвекции на теплообмен при течении воздуха в горизонтальной трубе при постоянной плотности теплового потока на стенке. Был сделан вывод, что при Re Ra = 10" вторичное течение становится весьма интенсивным и образуется пара симметричных горизонтальных вихрей. При Re Ra = 10 естественная конвекция оказывает заметное влияние на теплообмен в ламинарном течении. Было найдено, что критическое число Гейнольдса, при котором происходит переход к турбулентному режиму течения, зависит как от числа Рэлея, так и от уровня турбулентности втекающей жидкости. При высоких уровнях турбулентности на входе в трубу и отсутствии нагрева критическое число Рейнольдса составляет около 2000 и возрастает при увеличении числа Рэлея. Это объяснялось влиянием вторичного течения, подавляющего турбулентность. С другой стороны, при низком уровне турбулентности на входе критическое число Рейнольдса заметно выше (примерно 7700) и снижается при увеличении числа Рэлея. Усиливающееся вторичное течение вызывает переход к турбулентному режиму при меньших Re. На основании экспериментальных данных предложено следующее корреляционное соотношение аля критического числа Рейнольдса при низком уровне турбулентности течения во входном сечении трубы  [c.644]

    Консетов В.В. Доманский О.В. Трение и теплообмен на гидродинамическом начальном участке круглой трубы и плоского канала при ламинарном течении неньютоновских жидкостей // Сб. Тепло-и массообмен в неньютоновских жидкостях. М. Энергия. 1968. [c.149]


Библиография для Теплообмен при ламинарном течении жидкости в трубе: [c.337]   
Смотреть страницы где упоминается термин Теплообмен при ламинарном течении жидкости в трубе: [c.225]    [c.155]   
Смотреть главы в:

Тепломассообмен Изд3 -> Теплообмен при ламинарном течении жидкости в трубе




ПОИСК





Смотрите так же термины и статьи:

Жидкость течение

Течение ламинарное

Течение ламинарное теплообмен

Трубы течение теплообмен



© 2025 chem21.info Реклама на сайте