Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообменные аппараты теплоносители

    При расчете теплообменного аппарата весьма важным является точное определение средней разности температур между теплоносителями (температурного напора) Д ср. [c.15]

    Подогреватели с паровым пространством предназначаются для частичного испарения боковых погонов и остатков с низа ректификационных колонн. Как во всех испарителях, при нормальном режиме работы (В корпусе аппарата поддерживается определенный уровень жидкости, над которым имеется паровое пространство. Греющим теплоносителем в этих теплообменных аппаратах является водяной пар или подлежащие охлаждению горячие нефтепродукты. Греющий теплоноситель всегда проходит по трубкам. [c.195]


    Классификация теплообменных аппаратов. Теплоносители [c.11]

    Выбор давлений и температур в колоннах также обусловливается требованиями к качеству и состоянию целевых продуктов, составом исходного сырья, располагаемыми хладо- и теплоносителями и т, п. За исходный параметр часто принимают температуру конденсации паров в верхней части колонны при атмосферном давлении. Если температура конденсации паров при атмосферном давлении слишком низка, давление повышают. Например, пропан при атмосферном давлении конденсируется при —42 °С, при повышении же давления до 1,9 МПа его температура конденсации становится равной +55 °С. Снижение давления в колонне ниже атмосферного (вакуум) диктуется [ге-обходимостью уменьшения температуры кипения нижнего продукта либо из-за технических трудностей достижения требуемого уровня температуры, либо из-за разложения продукта. Выбор температур определяется также рациональной разницей температур охлаждающей среды и паров в верхней части колонны, теплоносителя и остатка — в нижней части колонны, ибо от этого во многом зависит поверхность теплообменных аппаратов. [c.106]

    По химическим свойствам применяемые в теплообменных аппаратах теплоносители могут быть инертными, средней и высокой [c.335]

    Типичным примером теплоотдачи этого вида служит охлаждение трубопроводов и стенок теплообменных аппаратов воздухом обогрев технологических аппаратов химических производств при помощи естественной циркуляции теплоносителя охлаждение конденсаторов и холодильников естественной конвекцией окружающе-3 Заказ 337 33 [c.33]

    Теплообменными аппаратами называют устройства, предназначенные для передачи тепла от одного теплоносителя к другому для осуществления различных тепловых процессов, например, нагревания, охлаждения, кипения, конденсации или более сложных физ ико-химических процессов — выпарки, ректификации, абсорбции и т. п. [c.7]

    Выбирают направления тока теплоносителей. Поскольку внутри труб легче достичь повышенной скорости, в жидкостно-жидкостных теплообменных аппаратах теплоноситель с меньшим коэффициентом [c.49]

    Для прохода через теплообменный аппарат теплоносители должны подаваться под некоторым избыточным давлением, чтобы преодолеть гидравлическое сопротивление аппарата. [c.29]

    Поверхностные теплообменные аппараты в свою очередь подразделяют на рекуперативные и регенеративные. В рекуперативных аппаратах тепло от одного теплоносителя к Другому передается через разделяющую их стенку из теплопроводного материала. В регенеративных теплообменных аппаратах теплоносители попеременно соприкасаются с одной и той же поверхностью нагрева, которая в первый период нагревается, аккумулируя тепло горячего теплоносителя, а во второй период охлаждается, отдавая тепло холодному теплоносителю. [c.7]


    Теплообменные аппараты подразделяются на различнее типы в зависимости от формы поверхности нагрева, способа организации процесса теплообмена, вида теплоносителей. [c.184]

    Если в теплообменном аппарате в качестве теплоносителей используются две жидкости с при.мерно одинаковыми теплофизическими свойства.ми, то равные коэффициенты теплоотдачи. могут быть получены при равных скоростях течения жидкостей. [c.208]

    Несмотря на перечисленные недостатки, масло в некоторых случаях применяется в качестве теплоносителя для обогрева теплообменных аппаратов. Применение его предусматривается и в новых проектах. [c.318]

    Для предупреждения подобных аварий при выпаривании легковоспламеняющихся компонентов из взрывоопасных продуктов следует строго регламентировать состав исходной смеси, поступающей на упарку, а также состав кубового продукта, до которого может отгоняться легкокипящий компонент. При этом следует всегда помнить, что при оголении греющей поверхности теплообменного аппарата температура стенки и пленки кубового продукта, смачивающего эту поверхность, может приближаться к температуре самого теплоносителя, что может вызвать местные перегревы продукта, взрывчатое разложение термически нестабильного вещества. Поэтому при выпаривании и разложении продуктов, способных в концентрированном виде к самопроизвольному химическому разложению, следует принимать меры, исключающие [c.138]

    Причиной разрушения теплообменных аппаратов, обогреваемых горячей водой, водяным паром и другими теплоносителями, может быть также электрохимическая коррозия, возникающая при воздействии содержащихся в воде кислорода и двуокиси углерода. Электрохимическая коррозия приводит к образованию на поверхности металла окислов железа. Скорость ее протекания возрастает при высоких температурах и давлениях. [c.145]

    Водяной пар широко используется в качестве рабочего тела в поршневых паровых машинах и паровых турбинах и как теплоноситель в теплообменных аппаратах. Поэтому изучение свойств водяного пара занимает в термодинамике важное место. [c.32]

    Ск — теплоемкость конденсата первичного теплоносителя на выходе нз теплообменного аппарата, ккал/кг-град, Суп — теплоемкость жидкого вторичного теплоносителя на входе в теплообменный аппарат, ккал/кг-град. Уравнение теплопередачи в общем виде можно представить следующим образом  [c.10]

    Изложенная методика определения Д ср справедлива при уело- ВИИ, что водяные эквиваленты обоих теплоносителей и коэффициент теплопередачи практически не меняются вдоль поверхности нагрева. Если это условие яе выполняется, то теплообменный аппарат необходимо рассчитывать по участкам, для которых эти величины можно принять постоянными (подробно см. [Л. 20]). [c.20]

    Теплообменные аппараты типа труба в трубе предназначены для нагрева или охлаждения нефтепродуктов различными теплоносителями. Максимальная температура теплоносителей в межтрубном пространстве не должна превышать 200 С, а в трубном пучке 450° С. Теплообменные аппараты выпускают на условное давление в трубном пучке и межтрубном пространстве до 25 кГ/сж . [c.212]

    Гидравлический расчет теплообменных аппаратов сводится к определению потерь давления по тракту каждого из теплоносителей от входа в аппарат до выхода из него или подбору проходных сечений при заданном перепаде давлений. [c.30]

    Параметры теплоносителей трехсекционного медного теплообменного аппарата (рис. 3-19) [c.122]

    Потеря напора в теплообыенных аппарата . Выбор скорости потока теплоносителя и допустимой потери напора в теплообменных аппаратах связан с общей схемой процесса. В регенераторах тепла пародистиллятов вакуумных колонн потери напора на паровых потоках исчисляются несколькими миллиметрами ртутного столба. Для паровых потоков атмосферных колонн и колонн, работающих под давлением, потеря напора может достигать значительно больших величин. Расчет потери напора ведут по известным, уравнениям гидравлики, учитывая местные гидравлические сопротивления, возникающие при прохождении потока через прорези в перегородках, между перегородками, при обтекании труб, на поворотах и т. д. [c.268]

    На рис. 3-26 показан стальной эмалированный теплообменный аппарат, предназначенный для конденсации паров и охлаждения жидкостей и газов. Рабочее давление в охлаждающих стака.нах и в аппарате 2 ати. Температура горячего теплоносителя на входе — до 120° С. Аппараты изготавливают с поверх,ностью нагрева 4 или [c.122]

    Так, например, в теплообменных аппаратах, огневых нагревателях и др. необходимо всячески интенсифицировать теплоотдачу на границе соприкосновения теплоносителей с нагреваемыми веществами, но вместе с тем следует увеличивать термическое сопротивление аппарата на границе с окружающей средой при помощи теплоизоляции для снил<ения потерь тепла. [c.61]


    Уравнения теплового расчета. Целью теплового расчета являются определение необходимой поверхности нагрева при известных расходах, начальной и конечной температурах теплоносителей и подбор типового теплообменного аппарата. Преж- [c.112]

    Иногда порядок расчета кожухогрубчатых теплообменников изменяют. В этом случае в интересах интенсификации процесса теплообмена сначала определяют размеры корпуса аппарата, а потом производят расчет трубчатки. Это предпринимается для того, чтобы, независимо ог числа трубок в трубном пучке, создать оптимальные условия теплоотдачи в межтрубном пространстве, задавшись необходимой для данного расхода теплоносителя площадью сечения межтрубного пространства. Скорость течения теплоносителя внутри трубок в этом случае (а следовательно, и значение коэффициента теплоотдачи в трубках) может корректироваться изменением числа ходов по трубному пространству аппарата. При этом увеличение числа ходов в теплообменном аппарате, имеющем определенное число трубок, приводит к у.меньшению числа трубок в одном ходе, а следовательно, к увеличению скорости течения теплоносителя в них. В многоходовых теплообменниках все количество жидкости, поступающее в трубное пространство, проходит сначала одну группу трубок, затем при помощи перегородок, отлитых или заваренных в крышках аппарата, поворачивается и поступает в другую группу трубок и т. д. (фиг. 108). [c.210]

    В технике, в частности в теплоэнергетике, весьма широко применяются различные поверхностные теплообменные аппараты. Поэтому задача оптимизации теплообменников, позволяющая достигнуть снижения расхода металла на поверхность теплообмена или уменьшить затраты мош,ности на прокачку теплоносителя, является актуальной и имеет существенное народнохозяйственное значение. [c.3]

    Ребристые трубы находят широкое применение при изготовлении теплообменной аппаратуры. При использовании ребристых элементов труб успешно решается большинство проблем, связанных с нагревом, охлаждением и конденсацией сред. Применение ребристых и ошипованных элементов труб экономически целесообразно в таких теплообменных аппаратах, в которых условия теплообмена с одним теплоносителем существенно хуже, чем с другим. В этих случаях, увеличивая поверхность труб со стороны оребрения или ошипования, удается компенсировать низкий коэффициент теплоотдачи ео стороны газа и, следовательно, интенсифицировать процесс теплообмена, уменьшить вес, габариты и стоимость теплообменной аппаратуры, а также эксплуатационные расходы. [c.151]

    В научно-исследовательских работах и литературе по теплопередаче основное внимание уделяется вопросам ин-тё сификации теплообмена. Безусловно, интенсивность теплообмена является важной количественной характеристикой теплообменных аппаратов и ее увеличение снижает необходимую площадь поверхности теплообмена. Однако, как правило, интенсификация теплообмена приводит к возрастанию гидравлического сопротивления теплообменника, т. е. увеличению затрат мощности на циркуляцию теплоносителей. Поэтому сравнение интенсивности теплопередачи различных вариантов поверхности является обоснованным лишь при одинаковой затрате мощности на циркуляцию теплоносителей, что не всегда учитывается. [c.3]

    Математические модели теплообменных аппаратов строятся на основе уравнений теплового баланса и теплопередачи. Уравнения теплового баланса составляются на основс уравнений гидродинамики аппаратов с учетом тепловой емкости потоков, аккумулирования тепла в неподвижных разделяющих стенках и тепловых эффектов химических реакций. Передача теплового потока от одного теплоносителя к другому осуществляется как за счет конвекции подвижных сред, так и за счет теплопроводности в материале разделяющей стенки. [c.53]

    За рубежом тепло пародистиллятных фракций широко используется для предварительного подогрева нефтяного сырья. Так, на атмосферно-вакуумной установке фирмы Креол (Ве,несуэлла) производительностью 3 млн. т/год нефти в результате глубокой регенерации тепла всех видов горячих потоков (в том числе и пародистиллятных фракций) температура предварительного подогрева нефти достигает 260 °С. Нефть пропускается через теплообменные аппараты, обогреваемые теплоносителями в следующем порядке циркуляционные орошения атмосферной колонны— -пародистиллятные фракции атмосферной колонны— -верхние продукты вакуумной колонны— -боковые потоки атмосферной колонны— -боковые потоки вакуумной колонны— -вакуум-остаток. На обычных установках нефть поступает в атмосферную печь при 170—180 °С. Таким образом, благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. [c.213]

    В качестве примеров математических моделей теплообменных аппаратов ниже проанализированы модели теплообменников простейших типов, в которых осуществляется передача тепла между двумя потоками — теплоносителем и хладоагентом. Во всех математических описаниях предполагается, что движение потоков теплоносителя и хладоагента характеризуется простейшими гидродинамическими моделями идеальное смешение и идеальное вытеснение . Кроме того, допускается, что коэффициент теплопередачи через стенку, разделяющую теплоноситель и хладоагеит, является постоянной заданной величиной, которая не зависит от их объемных расходов. Последнее допущение, строго говоря, неточно однако оно принято в дальнейшем для упрощения математических выкладок при решении задач оптимизации. [c.62]

    Все теплообменные аппараты по способу передачи тепла могут быть разделены на две большие группы поверхностные аппараты и аппараты смешения. В повфхностных тепло-обменных аппаратах передача тепла от одного теплоносителя к другому осуществляется с участием твердой сте.нки. Процесс теплопередачи в смесительных теплообменных аппаратах осуществляется путем непосредственного контакта и смешения жидких и газообразных теплоносителей. [c.7]

    Конструкторский расчет производят при проектировании теплообменного аппарата, когда известны или заданы расходы теплоносителей и их параметры на входе и выходе из теплообмвн.ного аппарата. Целью конструкторского расчета является определение величины поверхности теплообмена выбранного типа теплообменного аппарата. [c.8]

    При теплопередаче с канденсацией пара -первичного теплоносителя расчет температуры вторичного теплоносителя на выходе из теплообменного аппарата производится ло формуле [c.12]

    Значения поправочного коэффициента г з для рааличных схсм движения теплоносителей приведены на графиках рис. 1-1—1-11, где они даны в зависимости от характера взаимного направления потоков рабочих сред. При каждом из графиков и-меетоя соответствующая схема движения рабочих сред. Штриховка на этих схемах указывает на разделение потоков рабочих рред на отщельные ст>руи. Рис. 1-7, например, соответствует перекрестному пластинчатому теплообменному аппарату, рис. 1-8 —пучку труб, рис. 1-9 —одной трубе в поперечном потоке. [c.16]

    Штуцеры для теплообменыых аппаратов при теплоносителях жидкость—жидкость или пар—жидкость (Диаметры и расположение штуцеров для газа указываются в заказе на теплообменный аппарат) [c.84]

    Теплообменные аппараты с плавающей головкой изготовляют одинарными и сдвоенными (рис. 5-1). Для увеличения турбулизации теплоносителя в межтрубном пространстве устанавливают поперечные перегородки (рис. 5-2). В перегородках первого типа турбулиза-ция потока достигается за счет резкого увеличения скорости в кольцевых зазорах между отверстиями в перегородках и трубками. Перегородки второго типа делают с секторным йырезом, что позволяет получить спиральный поток среды в межтрубном пространстве. [c.187]

    Теплообменные аппараты с плавающей головкой предназначены для нагрева или охлаждения нефтепрвдуктов в жидком или парообразном состоянии. Предельные рабочие давления в них в зависимости от температуры теплоносителей приведены в табл. 5-1. [c.187]

    Полученные ранее критерии tie, щ, могут быть использованы при сравнении различных теплоносителей. С этой задачей встречаются при выборе теплоносителя для охлаждения атомных реакторов, для различных теплообменных аппаратов, а также при выборе рабочих тел для замкнутых циклов, например ЗГТУ. Обычный путь решения этой задачи — сравнение результатов расчета вариантов, полученных при использовании различных теплоносителей. Однако результаты такого сравнения существенно зависят от принятых тепловых схем, условий сопоставления и рассматриваемых консттрукций. Поэтому прежде чем сравнивать показатели вариантов с различными теплоносителями, целесообразно предварительно провести сопоставление свойств непосредственно самих теплоносителей для оценки перспективы их возможностей и достижимых показателей при различных параметрах. Основой такого сопоставления может служить разработанная выше методика сравнения поверхностей при условии постоянства конфигурации каналов и их пространственного расположения в решетке, что приводит к условию 112= 1- К роме того, смена теплоносителя в аппарате не влияет на коэффициент gx, т. е. gx2/gxi = l (здесь индекс 1 означает заданный, а 2 — исследуемый теплоноситель. Отсюда следует, что результаты сравнения для Q, F, N w Q, X, N характеристик аппарата будут одними и теми же. Это упрощает общее решение задачи. [c.102]


Смотреть страницы где упоминается термин Теплообменные аппараты теплоносители: [c.201]    [c.285]    [c.138]    [c.10]    [c.10]    [c.255]    [c.113]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Теплоноситель



© 2025 chem21.info Реклама на сайте