Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические реакций как процесс перестройки и образования МО

    III. 2. ОРГАНИЧЕСКИЕ РЕАКЦИИ КАК ПРОЦЕСС ПЕРЕСТРОЙКИ И ОБРАЗОВАНИЯ МО [c.141]

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]


    В процессе микробиологической ассимиляции углеводородов микроорганизмы используют энергетический эффект реакции взаимодействия кислорода с молекулами органических соединений, при этом за счет энергии разрыва связей С—С, С—Н, С—8 и С—N образуются новые связи С—О, Н—О. В результате такой перестройки выделяется определенное количество энергии. Различные виды микроорганизмов используют и различные окислительные реакции (Од-аэробы, 80д- и М0-анаэробы). Анаэробные и факультативно анаэробные виды микроорганизмов осуществляют разрыв связей в сульфатах и нитратах, сопровождающийся выделением кислорода в активной форме и образованием новых связей С—О и Н-0 [2]. [c.128]

    При подходящих условиях ионные реакции и полярные перегруппировки протекают очень быстро, но для органических соединений, претерпевающих превращения по механизмам общего основного или кислотного катализа, этап появления промежуточного иона — заряжение молекулы субстрата обычно затруднен и относится к лимитирующим стадиям суммарной реакции. Характерной особенностью ферментативных аналогов тех же процессов является пуш-пульный механизм — одновременное присоединение и отщепление протона от различных участков превращаемого субстрата, которое не связано с общим заряжением молекулы и протекает достаточно быстро. Это и есть тот путь, по которому в ферменте создаются подходящие условия для протекания ионных переходов. При этом очень важно, что участки присоединения и отщепления протонов разделены химическими связями, претерпевающими перестройку только в таком случае не возникает цвиттер-иона (двухзарядного промежуточного продукта), и электрон беспрепятственно переносится по системе перестраиваемых связей. Однако для этого необходимо не простое изменение кратностей всех связей по пути перераспределения электронной плотности, а альтернирующее изменение кратности на 1 при условии, что ни одна из связей не остается в результате реакции неизменной. Частным, но не очень существенным для ферментативного катализа примером такой системы может служить сдвиг электронов в системе сопряженных связей. Для катализа гораздо более важную роль играет расщепление и возникновение связей в активном комплексе, т. е. переход от кратности 1 к О и обратно. Это позволяет участвовать в системе переноса электрона химически независимым молекулам, если при образовании и распаде активного комплекса новые связи возникают на месте разрывов, а простые — либо рвутся, либо становятся двойными. Такую совокупность связей назовем ЦПС — цепью пере- [c.264]


    Прежде всего органические реакции можно классифицировать по тгту образующихся активных частиц и характеру перестройки связей в процессе реакции. С этой точки зрения они делятся на гетеролитические (ионные), я тлкжс гомолитические (радика.чьпые). Первые протекают с разрьшом ковалентной связи так, чтобы электронная пара осталась у одного из атомов, и сопровождаются образованием ионов. [c.283]

    На первой стадии происходила дегидратация, сопровождающаяся конденсацией ОН-групп. По температуре это совпадало с началом улетучивания органических продуктов пиролиза к моменту, когда система теряла около 28% воды. Этот процесс в последующем сопровождался разрывом эфирных связей фосфата с формированием полифосфатов и карбонизованного кокса. Для этих процессов было предложено три механизма свободно-радикальный, с участием карбоние-вого иона и циклический, сопровождающийся г<ыс-элиминированием [24, 25]. Свободно-радикальный механизм был исключен из рассмотрения из-за отсутствия влияния ингибиторов свободно-радикальных реакций на начальную скорость пиролиза [25]. Ион-карбониевый механизм был подтвержден посредством кислотного катализа и его кинетических особенностей [24,25]. Этот механизм, по всей видимости, должен проявляться в том случае, когда у р-углеродного атома отсутствует водород, как в случае ПДФ, что является необходимым условием для реализации реакции элиминирования посредством образования циклического переходного состояния. Молекула олефина образуется из термодинамически наиболее выгодного карбониевого иона. Водородная миграция или перестройка структуры могут способствовать образованию наиболее стабильного реакционного карбониевого иона. После того как осуществляется реакция по ионному механизму эфирного пиролиза с раскрытием цикла, происходит вторая стадия термодеструкции эфиров, описываемая по механизму г<мс-элиминирования (6.3). [c.165]

    Прежде всего органические реакции можно классифицировать по типу образующихся активных частиц и характеру перестройки связей в процессе реакции. С этой точки зрения они делятся на гетероли-тические (ионные), а также гомолитические (радикальные). Первые протекают с разрывом ковалентной связи так, чтобы электронная пара осталась у одного из атомов, и сопровождаются образованием ионов. Второй тип реакций происходит с симметричным разрывом ковалентной связи и образованием пары свободных радикалов. [c.549]

    Предполагается, что вешества, входившие в состав коацерватов, вступали в дальнейшие химические реакции при этом происходило погло-шение коацерватами ионов металлов, в результате чего образовывались ферменты. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводороды), что приводило к образованию примитивной клеточной мембраны, обеспечивавшей коацер-ватам стабильность. В результате включения в коацерват предсушествуюшей молекулы, способной к самовоспроизведению, и внутренней перестройке покрытого липидной оболочкой ко-ацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые были способны поглощать больше компонентов среды, так что этот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к возникновению примитивного самовоспроизводяшегося гетеротрофного организма, питавшегося органическими веществами первичного бульона. [c.277]


Смотреть страницы где упоминается термин Органические реакций как процесс перестройки и образования МО: [c.115]   
Смотреть главы в:

Современные теоретические основы органической химии -> Органические реакций как процесс перестройки и образования МО




ПОИСК





Смотрите так же термины и статьи:

Образования пар процесс

Органические процессы

Органические реакции

Реакции как процесс перестройки образования



© 2025 chem21.info Реклама на сайте