Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перераспределение электронной плотности при присоединении протона

    Присоединение или отщепление протона является особенно эффективным средством перераспределения электронной плотности в молекуле. Несомненно, что такое перераспределение является причиной сильного каталитического действия кислот и оснований. [c.419]

    Константы ионизации. Перераспределение электронной плотности при возбуждении оснований, нуклеозидов и нуклеотидов влияет на легкость диссоциации или присоединения протона к пуриновым и пиримидиновым ядрам, иными словами, меняет рК. этих соединений. Энергия возбуждения нейтральных и ионизованных молекул различна, что в шкале волновых чисел может быть выражено уравнением [c.623]


    Присоединение к этой системе одного электрона приводит к перераспределению электронной плотности, причем электрон не фиксируется у какого-либо определенного атома цикла. Присоединение второго электрона вызывает новое перераспределение плотности, в результате которого атом С(4> делается наиболее отрицательным (1,401) к этому атому п присоединяется протон Н+. [c.70]

    V. 1. А. ПЕРЕРАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ ПРИ ПРИСОЕДИНЕНИИ ПРОТОНА [c.137]

    В комплексе с катализатором может происходить существенное перераспределение электронной плотности в молекуле субстрата, приводящее к изменению его реакционной способности. Например, присоединение к субстрату протона или образование субстратом координационной связи с ионом металла новьппает электрофильность субстрата, делая возможным взаимодействие его с относительно слабыми нуклеофильными реагентами. Так, ноны Си + являются эффективными катализаторами гидролиза эфиров аминокислот. Это, в первую очередь, связано с тем, что последние образуют хелатный комплекс с ионом Си -+, в котором положительный заряд иона Сц + поляризует связь [c.257]

    Описанная выше модель применима к реакциям с участием нескольких типов СН-кислот, особенно ж реакциям отщепления протона от нитросоединений и кетонов и к реакциям присоединения протона к ароматическим соединениям. Имеются несомненные доказательства того, что у всех этих соединений при протекании реакции происходит резкое перераспределение электронной плотности. Интересно выяснить, почему другие типы СН-кислот, в особенности циансодержащие соединения и дисульфоны, обладают совсем иными свойствами. Некоторые из них являются достаточно сильными кислотами, константы диссоциации которых можно измерить в водных растворах. Исследование кинетики взаимодействия этих кислот с основаниями с помощью методов галогенирования, изотопного обмена или по уширению линии протонного магнитного резонанса позволяет определить константы скорости как [c.251]

    При подходящих условиях ионные реакции и полярные перегруппировки протекают очень быстро, но для органических соединений, претерпевающих превращения по механизмам общего основного или кислотного катализа, этап появления промежуточного иона — заряжение молекулы субстрата обычно затруднен и относится к лимитирующим стадиям суммарной реакции. Характерной особенностью ферментативных аналогов тех же процессов является пуш-пульный механизм — одновременное присоединение и отщепление протона от различных участков превращаемого субстрата, которое не связано с общим заряжением молекулы и протекает достаточно быстро. Это и есть тот путь, по которому в ферменте создаются подходящие условия для протекания ионных переходов. При этом очень важно, что участки присоединения и отщепления протонов разделены химическими связями, претерпевающими перестройку только в таком случае не возникает цвиттер-иона (двухзарядного промежуточного продукта), и электрон беспрепятственно переносится по системе перестраиваемых связей. Однако для этого необходимо не простое изменение кратностей всех связей по пути перераспределения электронной плотности, а альтернирующее изменение кратности на 1 при условии, что ни одна из связей не остается в результате реакции неизменной. Частным, но не очень существенным для ферментативного катализа примером такой системы может служить сдвиг электронов в системе сопряженных связей. Для катализа гораздо более важную роль играет расщепление и возникновение связей в активном комплексе, т. е. переход от кратности 1 к О и обратно. Это позволяет участвовать в системе переноса электрона химически независимым молекулам, если при образовании и распаде активного комплекса новые связи возникают на месте разрывов, а простые — либо рвутся, либо становятся двойными. Такую совокупность связей назовем ЦПС — цепью пере- [c.264]


    Контактные участки активного центра фермента специфически связывают субстраты и обеспечивают их взаимную ориентацию и сближение. Упорядоченное расположение субстратов приводит к снижению энтропии, а значит, и энергии активации процесса. Функциональные группы аминокислотных остатков, входящих в активный центр фермента, могут проявлять кислотно-основные свойства, т. е. фермент может играть роль акцептора или донора протонов, что невозможно для обычных катализаторов. После закрепления субстрата в активном центре на его молекулу воздействуют электрофильные и нуклеофильные группы каталитического участка. Это вызывает перераспределение электронной плотности и разрыв связей в молекуле субстрата, атакуемого кислотно-основными группами. До присоединения к ферменту субстрат имеет расслабленную конфигурацию. После связывания с активным центром молекула субстрата как бы растягивается ( напряженная , или деформированная , конфигурация). Места деформации легче атакуются реагентами. [c.103]

    КИ не изменяется и может быть охарактеризована спектром 2. С ростом температуры адсорбции до 450-500°С (рис. 1,3) на фоне структурной цеолит-ной п. п. 1630 см" появляется не характерная для воды узкая п. п. 1615-1620 см", которая не исчезает даже после десорбции при 200°С (рис. 1, 4). При этом при высоких температурах адсорбции не отмечено появление п. п. бензола и пара-ксш-лола как возможных продуктов диспропорциони-рования. Очевидно, в этих условиях толуол образует прочные ПС, а именно 0-комплексы. Смещение п. п. ароматического кольца до 1615-1620 см" и их усиление, наблюдавшееся и в гомогенных протонных комплексах [4], связано, очевидно, с перераспределением электронной плотности в кольце при присоединении протона, в результате чего связь между атомами углерода кольца по прочности приближается к двойной. [c.127]

    В то же время результаты исследований основности карбонильных соединений дают некоторые аргументы в пользу этой точки зрения. Если пытаться доказать, что смещения уСО при переходе от одного типа соединения к другому зависят главным образом от перераспределения электронной плотности но связи (т. е. от химических эффектов), а не от эффектов взаимосвязи колебаний, то необходимо найти какую-то независимую характеристику электронного распределения, которая может быть применена ко всем типам карбонильных соединений. Наиболее под.ходящие характеристики — потенциалы ионизации кислородных атомов или их основность. Первая из этих характеристик была изучена Куком 46, 47], но применительно к сопряженным системам она имеет тот недостаток,, что часто трудно провести различие между отрывом электрона от атома кислорода или с двойной связи. Измерения основности легко могут быть проведены либо по наблюдениям за нонижением уС0 при присоединении льюисовых оснований, например ВЕз, либо измерением силы водородных связей, образуемых стандартным донором протонов [38, 48, 49]. [c.151]

    Природа связей сера — кислород уже обсуждалась в гл. 6 в связи с рассмотрением констант диссоциации о1 икислот, а также в связи с анализом влияния группы —50з на константы диссоциации карбоновых кислот и аминов. Хотя проведенное рассмотрение говорит в пользу того, что отщепление или присоединение протона почти не приводит к перераспределению электронной плотности молекулы, выдвинутые доказательства были неубедительными. В отношении аналогичной проблемы для СЫ-группы, по-видимому, почти нет теоретических предложений или фактических данных. Истинная ситуация, вероятно, является промежуточной между предельными электростатической и мезомерной моделями. Однако несомненно, что содержащие указанные заместители СН-кис- [c.253]

    Мы закончим эту главу некоторыми примерами применения рассмотренной теории для интерпретации зксперимен-тальных данных. Как уже отмечалось в гл. 10, перенос протона от АН к В иногда сопровождается заметным перераспределением электронной плотности фрагмента А или В после удаления или присоединения протона. В частности, сильное перераопределение электронной плотности по всей молекуле свойственно псевдокислотам (например, нитропарафинам или кетонам) (см. гл. 10). Соответствующие константы скорости имеют низкие значения, даже для термодинамичеаки выгодных процессов. С помощью простых электростатических моделей в гл. 10 было показано, что эффект перераспределения электронной плотности оказывается на форме электронных термов, приводя к тому, что изменение потенциальной энергии в зависимости от расстояния А—Н в таких соединениях происходит более резко, чем в соединениях без сильной электронной перестройки (рис. 14 гл. 10). В предположении классического пути перехода изменение формы потенциальной кривой могло бы обусловить повышение энергии барьера, который должен преодолеть протон, и, следовательно, уменьшение константы скорости. [c.372]

    Если при гидролизе сложных эфиров [18—21] образование подобного комплекса протекает в две стадии — быстрый перенос протона от иона гидроксония к сложному эфиру и последующее медленное присоединение воды, определяющее общую скорость процесса гидролиза, то образование промежуточного комплекса тина (V.17) при взаимодействии триалкилоксониевой соли со сложным эфиром является, по-видимому, одностадийным процессом. При смешении реагентов в растворе нитробензола наблюдается мгновенное образование непрочного комплексного соединения в результате взаимодействия а-углеродного атома этильной группы молекулы оксониевой соли с обладающим повышенной электронной плотностью атомом кислорода карбонильной группы молекулы бутилацетата. Это подтверждается результатами исследования ИК-спектров реакционной смеси [111]. В спектре этого раствора наряду с узкой симметричной полосой с максимумом поглощения 1730 см , соответствующей валентному колебанию карбонильной группы в сложных эфирах, появляется новая полоса с максимумом 1714 см , отсутствующая в спектре бутилацетата в растворе нитробензола. Для суждения о масштабе взаимодействия отметим, что образование водородной связи между спиртовой и карбонильной группой снижает частоту колебания этой группы на 5—15 см- [114]. Кроме того, в группе полос 1278, 1250 и 1240 m i, наличие которых, согласно данным [115], обусловлено явлением поворотной изомерии в сложных эфирах, при взаимодействии бутилацетата с триэтилоксонийгексахлоранти-монатом в растворе нитробензола наблюдается значительное увеличение интенсивности полосы с максимумом 1278 см . Такое перераспределение интенсивности может быть вызвано стабилизацией соответствующего поворотного изомера при образовании комплекса. Таким образом, приведенные выше данные несомненно свидетельствуют о комплексообразовании. [c.184]



Смотреть главы в:

Гидротация и межмолекулярное взаимодействие  -> Перераспределение электронной плотности при присоединении протона




ПОИСК





Смотрите так же термины и статьи:

Перераспределения

Плотность электронов

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны



© 2025 chem21.info Реклама на сайте