Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы и механизмы радикальных реакций

    Химические свойства. Наиболее характерные для алканов реакции замещения (галогенирование, нитрование, сульфирование) протекают по радикальному механизму (5 ). Для реализации этих реакций требуются достаточно жесткие условия так, образование свободного атома или свободного радикала происходит, например, при термическом расщеплении молекулы одного из исходных веществ. [c.321]


    Радикальные реакции крекинга. Свободно-радикальный механизм гомогенных реакций термического крекинга парафиновых углеводородов разработан Райсом и сотр. [300]. В основе этого механизма лежит предположение, что молекула парафина путем отрыва атомов водорода превращается в свободный радикал. Вероятности образования радикалов при разрыве С —Н-связи у первичных, вторичных и третичных атомов углерода при 500° С находятся между собой в соотношении 10 3 1. Затем каждый радикал либо подвергается Р -расщеплению, либо отнимает атом водорода у другой нейтральной молекулы и рекомбинируется. В качестве примера в уравнении (74) показаны пути превращения н-бутильного радикала. Как и у карбониевых ионов, судьба каждого радикала определяется относительными скоростями переноса водорода и крекинга, т. е. соотношением / [КН]/Агр, где — константа скорости переноса водорода, а А ,) — константа скорости Р-расщепления. При температуре 500° С и давлении. RH, равном 1 атм, это соотношение значительно меньше 1 для всех радикалов, способных путем р-расщепления превращаться в третичные, вторичные и даже первичные радикалы. Однако, если превращение радикала должно сопровождаться отрывом метильного радикала или атома водорода, реакция переноса водорода успешно конкурирует с Р-расщеплением. [c.111]

    Определяющую роль в трактовке механизма окисления, катализируемого металлами переменной валентности, сыграли работы Габера и Вейса [28]. Каталитическое окисление органических соединений в присутствии металлов переменной валентности включает элементарные стадии, характерные как для ионных, так и для радикальных реакций [12, с. 209]. В результате реакции между ионом металла и реагентом происходит изменение валентности иона металла и образуется свободный радикал, обусловливающий возникновение и развитие цепного процесса окисления  [c.629]

    Однако возможен другой путь разложения молекул органических соединений, а именно радикально-цепной механизм распада молекул через свободные радикалы, при котором сначала, в первичной стадии процесса, образуются два свободных одновалентных радикала путем непосредственного разрыва простой связи. Затем радикалы, возникшие в первичной реакции, вступают во вторичные реакции с молекулами исходных веществ, радикалами и стенками, которые приводят к образованию конечных продуктов. В этом случае гамма получающихся конечных продуктов является следствием сложного многостадийного превращения, в котором участвуют промежуточные активные вещества в форме радикалов. Выход различных продуктов в сложном радикальноцепном превращении определяется соотношением скоростей конкурирующих между собой радикальных реакций, в которых радикалы появляются, заменяются или исчезают. Обыч-14 [c.14]


    Имеющиеся ресурсы не удовлетворяют потребность в бензоле, поэтому значительное количество толуола деалкилируют и превращают в бензол. Реакция протекает в присутствии оксида хрома на оксиде алюминия, цеолитах и просто термически. Механизм термической реакции, очевидно, радикальный и протекает через неустойчивый свободный радикал циклического строения  [c.156]

    Все эти соображения привели к предположению о преимущественной атаке радикалом связи С—Н, что в дальнейшем получило подтверждение нри изучении реакций радикалов с углеводородами. Возможно, что такое предположение было принято в 30-х годах нод влиянием развитого Райсом и Герцфельдом [92] в 1934 г. радикально-цепного механизма крекинга углеводородов. Эти авторы, приняв, в числе прочих, и то предположение, что атомы и свободные радикалы атакуют и разрывают С—Н-, а не С—С-связь в углеводороде, смогли удовлетворительно объяснить качественный и количественный состав продуктов крекинга. Как будет видно из дальнейшего, такое действие свободного радикала на углеводородную молекулу сохранилось и во всех последующих окислительных схемах. [c.130]

    Гомолитические (радикальные) реакции идут в том случае, если атакующий реагент — свободный радикал (частица с неподелен-ным электроном, см. с. 28). По радикальному механизму могут протекать реакции замещения, присоединения или отщепления (последние две реакции чаще идут по ионному механизму). Например  [c.25]

    Механизм реакции был предметом многих исследований [285]. Внутримолекулярный характер перегруппировки доказан перекрестными экспериментами с использованием метода меченых атомов (метка — С) [286]. Об этом же свидетельствует и обнаруженное сохранение конфигурации при Н [287], На первой стадии происходит отрыв кислого протона с образованием илида 72, который удалось выделить [288]. Многочисленные данные [289] о наличии спектров ХПЯ [290] (см. т. 1, разд. 5.8) свидетельствуют о том, что непосредственным предшественником продукта является свободный радикал. Был предложен механизм с участием радикальных пар [291]  [c.167]

    Выясним сначала, какова должна быть абсолютная скорость реакции, если исходить из механизма миграции радикальных состояний. Для того чтобы свободный радикал смог оторвать атом водорода от соседнего звена полимерной цени, он прежде всего должен переместиться на расстояние б, отделяющее его от этого звена, т. е. в среднем на расстояние 3—5 А (диаметр поперечного сечения полимерной цепи). Частота соударений данного радикала с водородными атомами, очевидно, будет [c.457]

    По радикальной теории катализа кристалл оказывает влияние на ход реакции по той же причине, по какой свободный радикал оказывает влияние на ход гомогенной реакции. При этом действуют те же два закона, что и в цепных гомогенных реакциях закон сохранения общего числа валентностей и закон стремления валентностей к насыщению. Радикальный механизм катализа непосредственно вытекает из электронной теории и является химическим аспектом электронного механизма катализа. [c.236]

    В результате этих работ установлено, что сложные процессы жидкофазного окисления углеводородов происходят по свободно-радикальному механизму с вырожденным разветвлением. Это означает, что разветвление цепей в реакциях этого типа происходит не в момент взаимодействия свободного радикала с молекулой, как в обычных разветвленных цепях, а за счет такой самостоятельной реакции стабильного промежуточного продукта, происходящей спустя значительное время после его возникновения, при которой образуются новые активные центры. Накопление в реакционной системе промежуточного продукта (например, гидроперекиси), разветвляющего реакционные цепи, и обусловливает автоката-литический характер таких реакций. [c.48]

    Окисление фенолов может происходить как по ионному, так и по радикальному механизмам. Например, реакция Эльб-са [реакция 9.29) ] предположительно является электрофильным замещением, а окисление с помощью соли Фреми (стабильного свободного радикала), очевидно, представляет собой радикальный процесс [реакция (9.30)]  [c.241]

    Радикальное расщепление вызывает появление нового углеродсодержащего свободного радикала, способного реагировать с присутствующими молекулами. Такие реакции приводят к замещениям, механизм которых отличен от тех, которые рассматриваются в разд. 15.4. [c.418]

    Радикальные процессы обычно протекают по цепному механизму. Они начинаются с воздействия на молекулу атомов или частиц, имеющих неспаренные электроны, в больЩинстве случаев возникающих за счет термической или фотохимической диссоциации лабильных в этом отношении молекул при реакциях замещения в результате воздействия такой активной частицы от реагирующей молекулы отрывается один из атомов, чаще всего водород, и образуется новый свободный радикал. Благодаря высокой активности свободных радикалов они вступают в реакцию с молекулами реагента, также отрывая от них один из атомов, причем вновь образуются частицы, имеющие нечетное количество электронов. Такое поочередное образование из реагирующей молекулы и из реагента частиц с неспаренным электроном создает длинную цепь актов превращения [1, 2]. Обрыв цепи происходит в результате соединения друг с другом двух частиц, имеющих нечетное количество электронов с образованием валентнонасыщенной молекулы. В качестве п.римера рассмотрим возможное течение реакции между иодистым метилом и иодистым водородом, в результате которой образуются метан и иод [1]. Процесс течет по следующей схеме  [c.744]


    Когда речь идет об окислении углеводородов, то из трех основных механизмов химических реакций молекулярного, ионного и радикального (цепного) — последний является энергетически наиболее выгодным. Действительно, молекулярный механизм, т. е. непосредственная реакция между углеводородом и кислородом, нуждается для своего протекания в значительном расслаблении прочных связей С—Н (75— 100 ккал/моль) и 0=0 (117 ккал/моль), а следовательно, и в большой энергии активации [7]. Ионный механизм в этих реакциях не имеет места в силу неполярности исходных веществ и большой трудности образования ионов в этих. системах. Наиболее выгодным в энергетическом отношении оказывается цепной механизм, при котором каждый образовавшийся в системе свободный радикал приводит к превращению большого числа исходных молекул углеводорода и кислорода в продукты окисления. - [c.10]

    Свойства синтетических полимеров зависят от условий, в которых они получаются, в том числе от температуры полимеризации. При низкой температуре получаются более высокомолекулярные и менее полидисперсные полимеры, но скорость полимеризации в отсутствие инициаторов (или катализаторов) так мала, что процесс не может иметь практического применения. В процессе полимеризации по радикальному механизму скорость реакции зависит от концентрации свободных радика- [c.130]

    Образовавшийся свободный радикал С Нб инициирует цепную реакцию. Механизм цепной радикальной полимеризации — см. учебник Органическая химия , с. 71. [c.255]

    Так, три-тг-толилметил спонтанно претерпевает дис-пропорционирование, в котором местами начала атаки являются водородные атомы метильных групп боковых цепей... Аналогично реагируют другие нара-замещенные производные трифенилметила (Alk— jHJg —, но скорость реакции понижается при увеличении размера алкильной группы [188, стр. 60—61J. На основании изучения механизма радикальных реакций в растворах Уотерс сделал вывод, что ... решающим фактором в определении направления реакций активных свободных радикалов может быть пространственная близость реагирующих частиц (подчеркнуто мной.— В. К.). Атомарный водород, по-видимому, может вызвать при реакции с парафином разрыв связи С—С более крупный метильный радикал, вероятно, может оторвать от молекулы, с которой он сталкивается, только самые периферические атомы (расположенные у крайних атомов углеродной цепи.— В. К.), т. е. водород [188, стр. 144J. [c.80]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]

    Реакция полимеризации состоит из трех элементарных стадий образования активного центра, роста цепи и обрыва цепи. В зависимости от природы активного центра различают радикальную полимеризацию, при которой активным цеятром является свободный радикал, а рост цепи протекает гомолитически, и ионную полимеризацию, при которой активными центрами являются ионы или поляризованные молекулы, а рост цепи протекает гетеролитически. Методы возбуждения и механизмы этих двух видов полимеризации различны. [c.9]

    Реакция окисления парафиновых углеводородов протекаег по радикальному механизму. Вначале под действием тепла или катализатора образуется свободный радикал, который взаимодействует с кислородом и образует перекисный радикал  [c.91]

    Окисление p-D-глюкозы в D - г л ю к о и о-б-л а к-т о н. Эту реакцию катализирует глюкозооксидаза (нотатин, пенициллин В), содержащая ФАД (2 моля на моль фермента) [438]. Молекулярная масса фермента 154 ООО он содержится в плесневых грибах Peni illium notatum и др. [439, 4401. Механизм ферментного окисления изучен с помощью Н , меченной 0 [4411, при этом оказалось, что кислород, выделяющийся при разложении перекиси водорода под действием каталазы, не содержит О, т. е. глюкозооксидаза катализирует перенос водорода от глюкозы в газовой фазе, акцептором водорода служит газообразный кислород. По радикальному механизму в первой ступени реакции (З-Л-глюкопираноза (а) теряет протон и электрон с образованием свободного радикала (б), который, теряя второй электрон, образует оксониевый ион (в). Прототропная реакция между оксониевым ионом и перекисным анионом завершает окисление с образованием D-глюконо-б-лактона (г). [c.563]

    Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса. Необходимым условием протекания реакции деструкции является отрицательное значение энергии Гиббса. Термические реакции протекают по радикальному механизму как цепные, так и не цепные. Вероятность протекания ионных реакций незначительная. Так, гетеролитичес-кий распад, например, связи С-С происходит с затратой энергии 1206 против 360 кДж/моль для гомолитического распада. Согласно радикально-цепной теории, при первичной стадии термического распада парафиновых углеводородов образуются два свободных радикала, которые могут дать начало реакционным цепям. Направление распада молекулы парафинового углеводорода на радикалы зависит от величины энергий связей, которые характеризуются теплотой их образования. [c.127]

    Все эти реакции протекают через стадию промежуточного образования свободного радикала с последующей циклизацией и образованием феназина и других продуктов, появления которых следует ожидать по свободно-радикальному механизму. Не исключена возможность, что пурпурный конечный продукт внутреннего индикатора окисления (дифениламиносульфонат натрия) имеет структуру феназониевой соли. Условия титрования приближаются к условиям синтезов Виланда и идентичны с условиями, предлагаемыми другими авторами, которые будут описаны ниже (стр. 537). Однако в настоящее время предполагают (это не доказано), что пурпурный конечный продукт в действительности представляет собой дифенилбензидиновый фиолетовый [47]. [c.514]

    К этим двум типам реакций следует добавить еще реакцк радикального замещения, которые характеризуются расщеплю нием ковалентной связи у исходного вещества и образование либо двух новых продуктов замещения, либо одного продукта свободного радикала. Установление механизма этих типов пр( вращений позволило теоретически объяснить ранее установле ные эмпирические правила, относящиеся к реакциям замещениз отщепления, а также и присоединения (в том числе и присоед нения по кратным углерод—углеродным связям и т. д.). [c.232]

    При полимеризации присоединением образование макромолекулы не сопровождается образованием каких-либо низкомолекулярных соединений из реагирующих молекул. Виниловые мономеры представляют собой основной класс соединений, полимеры которых могут быть получены полимеризацией указанного типа. Термин виниловый мономер применяется ко всем олефиновым соединениям строения СНг = СНХ, СН2 = СХУ в качестве примеров соединений этого класса можно назвать стирол СН2 = СН—СеНв и метилметакрилат СН2 = С (СНз) СООСНз. Другие олефиновые производные (например, стильбен, малеиновый ангидрид, эфиры фумаровой кислоты) могут участвовать в реакции соиолиме-ризации, хотя они обычно и не образуют гомополимеров по свободно-радикальному механизму. Олефиновые соединения указанного выше типа, в которых атомы водорода замещены атомами фтора, также обладают многими характерными особенностями виниловых мономеров и обычно включаются в этот класс. Е есколько далее будут рассматриваться реакции полимеризации винпловых мономеров, протекающие через стадию образования промежуточных продуктов свободно-радикального характера под свободным радикалом понимают соединение, обладающее неспаренным электроном. Термин радикал используется в этой книге как синоним термина свободный радикал . [c.10]

    Нами установлено, что кислород, акриламид и 2,2,6,6-тетраметил-4-оксопиперидин-1-оксил (стабильный свободный радикал) ингибируют реакции персульфата со спиртами, что указывает на радикально-цепной механизм этих реакций. [c.274]

    В зависимости от природы активного центра, ведущего цень, и от механизма акта роста цепи различают 1) р а д и к а л ь н у ю П., в к-рой активным центром является свободный радикал, а акт роста является гомолитич. реакцией (см. Радикальная поли.меризация) и 2) и о и н у ю П., нри к-рой активные центры являются ионами или поляризованными молекулами, а раскрытие двойной связи (или цикла) ироисходит ге-теролитнчески (см. Ионная поли.меризация). Соответственно, растущие макромолекулы в радикальной П. представляют собой макро радикалы, а в ионной —. чакроионы. В свою очередь, ионная П. подразделяется на анионную, если концевой атом растущей цеии несет ПОЛНЫ или частичный отрицательный заряд, и катионную, если этот атом заряжен положительно (см. Апионная поли.меризация, Катионная полимеризация). [c.442]

    Первый несомненный пример изомеризации свободного радикала в растворе изучен Урри и Харашем [106]. При реакции фенилмагнийбромида и неофилхлорида в присутствии хлористого кобальта (когда, как известно, реакция протекает по радикальному механизму стр. 284) образуются третично-бутилбецзол, изобутилбензол, изобутенил-бензол, Р,Р-диме-тилстирол, а также продукты димеризации радикалов  [c.419]

    В качестве примера возможности течения реакций по двум механизмам рассмотрим распад фенилдиазониевых и дифенилиодоние-вых солей эти процессы обычно протекают по радикальному механизму, приводя к образованию свободного радикала фенила. Но, как показали А. Н. Несмеянов и Л. Г. Макарова, разложение диазо-ниевых и иодониевых солей можно провести и по ионному механизму, если вместо хлористых солей взять их борфтористые соли в результате распада последних образуется фенил-катион, реагирующий иначе, чем свободный радикал фенил [19]  [c.869]

    При автоокислении алкилбензолов в жидкой фазе, протекающем по цепному свободно-радикальному механизму, в реакции продолжения цепи атаке гидроперокси-радикала Подвергается преимущественно водород, авязанный с углеродным атомом, находящимся в -положении к ароматическому ядру [223]. Невысокая активность пероксидного радикала обусловливает его достаточную иабирательностъ по отношению к алкильному за местителю бензольного ядра с учетом энергетических и стерических факторов. [c.141]

    Механизм реакции хлорсульфирования радикальный под влиянием ультрафиолетового света (или свободного радикала) молекулярный хлор превращается в атомный, который радикализует углеводород. В результате взаимодействия алкильного радикала с двуокисью серы образуется радикал алкилсульфона. Далее алкил-сульфоновый радикал, взаимодействуя с молекулярным хлором, превращается в конечный продукт реакции — алкилсульфохлорид цепная реакция продолжается при участии атомного хлора  [c.235]

    Механизм реакции сульфохлорирования радикальный под влиянием ультрафиолетового света (или свободного радикала) молекулярный хлор превращается в атомный, который радикализует углеводород. В результате взаимодействия алкильного радикала с оксидом серы (IV) образуется радикал алкилсульфона. Далее алкил-сульфоновый радикал, взаимодействуя с молекулярным хлором, [c.239]


Смотреть страницы где упоминается термин Свободные радикалы и механизмы радикальных реакций: [c.188]    [c.144]    [c.225]    [c.156]    [c.311]    [c.310]    [c.493]    [c.296]   
Смотреть главы в:

Теоретические основы органической химии -> Свободные радикалы и механизмы радикальных реакций




ПОИСК





Смотрите так же термины и статьи:

Радикальные реакции

Реакции радикалов

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные радикалы реакции



© 2024 chem21.info Реклама на сайте