Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кодоны, соответствующие аминокислотам

    На этой схеме (ц, ах,. .. обозначают аминокислотные остатки белка. Напомним, что их может быть 20 сортов. А сколько сортов кодонов Легко подсчитать, что всего существует 4 = 64 различных кодона. Так о же, ре всякому кодону соответствует аминокислота Да, не всякому. [c.27]

Фиг. 162. Кодоны, соответствующие аминокислотам, показанным на фиг. 161. Фиг. 162. Кодоны, <a href="/info/166527">соответствующие аминокислотам</a>, показанным на фиг. 161.

    Кодоны, соответствующие аминокислотам [c.59]

    Шестьдесят один кодон соответствует аминокислотам, и все аминокислоты, за исключением триптофана и метионина, кодируются несколькими кодонами. Кодоны-синонимы обычно образуют группы, в которых два первых основания в кодоне являются общими, а третье-варьирует. Три кодона вызывают терминацию (ТЕРМ). Порядок оснований в кодоне записан, как обычно, в направлении от 5 -конца к З -концу. [c.60]

    Примечание. В скобках даны кодоны, соответствующие Аминокислотам. Использованы обозначения х=А, Г 1/=Ц, [c.42]

    Выше уже говорилось о том, что коллинеарность последовательностей кодонов и аминокислот была доказана путем прямых определений нуклеотидных последовательностей в молекулах РНК и ДНК и соответствующих последовательностей аминокислот в белках (разд. В, 2, и). [c.252]

    К кодону и-РНК присоединяются не свободные аминокислоты, а их переносчики — антикодон транспортной рибонуклеиновой кислоты (т-РНК). В молекуле т-РНК есть два активных участка — антикодон, который соединяется с кодоном и-РНК, н участок с триплетом ЦЦА, связывающимся с активирующим аминокислоты ферментом аминоацил-т-РНК-синтетазой. Эти ферменты специфичны по отнощению к соответствующим аминокислотам. В активации аминокислот принимает также участие АТФ. Соединение антикодона т-РНК с кодоном и-РНК происходит только после образования комплекса аминокислота — фермент— т-РНК- Следовательно, из фонда клеточных аминокислот т-РНК выбирает соответствующую своему антикодону аминокислоту и занимает свое место на кодоне и-РНК. [c.45]

    В процессе трансляции кроме посыльной РНК участвуют транспортная РНК (т-РНК) и репликационная РНК (р-РНК), которая находится в составе комплекса с ферментом, катализирующим образование пептидной связи. Такой комплекс называют рибосомой. Каждый из участников трансляции имеет строго определенные функции. п-РНК последовательностью своих кодонов определяет порядок присоединения тех или иных аминокислот в синтезируемом белке. т-РНК доставляет необходимые аминокислоты к месту синтеза. Для этого т-РНК использует собственный кодон (его называют антикодоном), который является комплементарным кодону п-РНК. т-РНК, несущая соответствующую аминокислоту, может присоединиться, таким образом, только к строго определенному участку п-РНК. [c.542]

    Как уже отмечалось выше, в ДНК в форме линейной последовательности нуклеотидов зашифрована структура всех клеточных белков. Т. к. белки составлены из 20 типов аминокислот, а нуклеиновые к-ты из 4 типов нуклеотидов, должен существовать специальный генетич. код, связывающий обе последовательности звеньев. Этот код триплетный тройка соседних нуклеотидов образует кодон, соответствующий одному аминокислотному остатку белковой цепи. Число возможных кодонов составляет 4 = 64, т. е. оно избыточно для кодирования 20 аминокислот. Поэтому генетич. код является вырожденным в большинстве случаев несколько кодонов соответствуют одной аминокислоте. Генетич. код во всей живой природе универсален, но картина его вырожденности носит на себе отпечаток эволюционной истории. [c.194]


    Комплекс [Ф — М — РНК] перемещается с малой части на крупную и садится на п-место. Переход требует затраты энергии, доставляемой гуанозинтрифосфатом (он действует подобно АТФ). Эти процессы носили подготовительный характер. Теперь, когда место а свободно, на него помещается одна из т-РНК со своим грузом какой-либо аминокислоты — и начинается собственно синтез полипептидной цепи. Между концевой аминокислотой [ФМ-РНК] и вновь прибывшей аминокислотой образуется пептидная связь, м-РНК делает шаг вперед , и поэтому место а на рибосоме освобождается ему соответствует теперь уже другой кодон на матричной РНК, и к этому кодону прикрепляется т-РНК, достав шая соответствующую аминокислоту. Например, если на рибосоме свободен кодон ААГ, то на него садится т-РНК с триплетом (антикодоном) УУС. Этот антикодон отвечает аминокислоте — фенилаланину (см. приложение табл. 3), и она входит в состав синтезируемого белка. Снова сдвиг м-РНК, освобождается очередной кодон на м-РНК, пусть это будет, скажем, ЦЦГ к этому кодону может прикрепиться т-РНК, имеющая антикодон ГГЦ. Этот триплет отвечает аминокислоте глицину. Следовательно, в синтезируемой белковой цепи рядом с фенилаланином станет глицин. Соединение аминокислот будет происходить до тех пор, пока на м-РНК не обнаружится бессмысленный кодон (терминирующий), например УАА. Он не соответствует ни одной аминокислоте и играет роль точки, если сравнить белковую цепь с длинной фразой. Постепенное наращивание белковой цепи показано подробнее на цветной таблице П1, где намечен контур рибосомы, но не изображены а и п-места и комплекс ФМ = РНК, играющий роль инициатора синтеза. На рисунке 47 рибосома показана в виде объемного тела. Молекула м-РНК изображена в виде полосы, прикрепленной к [c.169]

    Таким образом, триплет представляет собой сигнал, информационную единицу, кодовое слово или же, как сейчас принято говорить, кодон. Соответствие последовательности кодонов и последовательности аминокислот носит коллинеарный характер. [c.50]

    Попробуем, исходя из всего этого, набросать относительно простую картину механизма белкового синтеза. Можно предположить, что РНК служит первичным источником информации. К развернутой цепи РНК, состоящей, к примеру, из 146 кодонов, присоединяется 146 соответствующих аминокислот (именно таково число аминокислот в одной из полипептидных цепей молекулы гемоглобина), которые случайно или направленно достигают ее поверхности. Между аминокислотами образуются пептидные связи, и молекула белка покидает матрицу. Вслед за тем эта молекула свертывается так, как это предписывается ее первичной структурой, и получается готовый апофермент. [c.53]

    Генетический код в высокой степени универсален. Указанные кодоны зачастую стимулируют включение соответствующих аминокислот в системах, полученных из [c.283]

    Новый подход к расшифровке кода, не связанный со сравнением криптограммы и текста, появился в конце 50-х годов, когда, с одной стороны, было показано, что в определенной точке полипептидной цепи мутантного белка одна аминокислота замещает другую, присутствующую в белке дикого типа, а с другой — были расшифрованы механизмы спонтанного и индуцированного мутагенеза (см. гл. XIII). Например если мутация, приводящая к замене аминокислоты а на аминокислоту , была индуцирована мутагеном, вызывающим транзиции азотистых оснований, то это означает, что кодоны, соответствующие аминокислотам а и , имеют два общих нуклеотида, а третий нуклеотид у обоих кодонов либо пуриновый, либо пиримидиновый. Если, далее, другая мутация, индуцированная мутагеном, вызывающим транзиции, приводит к замене аминокислоты а на аминокислоту у, это значит, что кодоны, соответствующие аминокислотам и Y, имеют один общий нуклеотид и различаются по двум другим нуклеотидам. Таким образом, анализируя известные замены аминокислот в мутантных белках и сопоставляя их с предполагаемыми заменами нуклеотидов, вызвавших мутации в соответствующих генах, в принципе можно построить схему взаимоотношений между аминокислотами и кодонами. Анализируя эту схему, можно попытаться расшифровать генетический код. [c.434]

    Функциональное значение молекулы тРНК заключается в обеспечении специфического узнавания данного кодона соответствующей аминокислотой. тРНК выступает в роли своего рода опознавательного устройства, контролирующего точность процесса трансляции. Это опознавательное устройство срабатывает на двух важнейших этапах, ко- [c.39]

    А. Гарен, изучавший генетический контроль синтеза щелочной фосфатазы у Е. oli, сравнил аминокислотные остатки, находившиеся в молекуле фермента дикого типа и у внутригенных ревертантов по локусу, кодирующему щелочную фосфатазу. Полученный результат представлен на рис. 15.18. Показаны только те кодоны соответствующих аминокислот, которые связаны со структурой амбер-кодона заменой одного нуклеотида. На основе этих данных амбер-кодон был идентифицирован как UAG. Аналогичным образом другие исследователи (С. Бреннер, Ф. Крик) расшифровали структуру еще двух нонсенс-кодонов oxpa- Jhh и о/гал-UGA. [c.400]


    ГЕНЕТИЧЕСКИЙ КОД, способ. аписи информации о последовательности аминокислот в белках в виде последовательности оснований в нуклешюпой к-те. Осн. св-ва Г. к. тршигпюсть — каждая аминокислота определяется последовательностью трех основаннй (кодоном) вырожден-П0С11, — из 64 возможных кодонов 61 кодирует 20 аминокислот, так что каждой аминокислоте соответствует от 1 до 6 кодонов универсальность — единый код для всех организмов. Кодоны, кодирующие аминокислоты, можно определить из таблицы  [c.125]

    Генетический код, выраженный триплетными кодонами, может быть записан нуклеотидной последовательностью ДНК или мРНК. Поскольку большая часть экспериментальной работы была проделана с мРНК, кодоны для аминокислот даются в том виде, в каком они встречаются в этой нуклеиновой кислоте (табл. 27-4). Соответствующие им последовательности оснований в ДНК и транспортной РНК (тРНК) называются антикодонами . [c.485]

    Принимая во внимание это обстоятельство, в настоящее время ГРЧ синтезируют методами генетической инженерии в специально сконструированных клетках бактерий. Будучи синтезированным в клетках Е. соИ, ГРЧ содержит дополнительный остаток метионина на НгН-конце молекулы. Биосинтез ГРЧ из 191 аминокислотного остатка бьш осуществлен в 1979 г. Д. Гедделем с сотрудниками. Сначала клонировали двунитевую кДНК далее путем расщепления получали последовательность, кодирующую аминокислотный порядок гормона, за исключением первых 23 аминокислот, — с фен (—NH2) до лей (23), и синтетический полинуклеотид, соответствующий аминокислотам от первой до двадцать третьей со стартовым ATG-кодоном в начале. Затем два фрагмента объединяли и подстраивали к паре 1ас-промоторов и участку связывания рибосом. Конечный выход гормона составил 2,4 мкг на 1 мл культуры, что составляет 100 000 молекул гормона на клетку. Полученный гормон на конце полипептидной цепи содержал дополнительный остаток метионина и обладал значительной био- [c.138]

    Уже из соотношения 64 кодона на 20 аминокислот следует, что код должен быть вырожденным, т. е. одной аминокислоте должно соответствовать несколько кодонов. Как видно из табл. 5.2, распределение аминокислот по кодонам весьма неравномерно. Трем аминокислотам — лейцину, серину и аргинину — соответствует по шесть кодонов, пяти аминокислотам — глицину, аланину, валину, пролину и треонину — по четыре, изолейцину — три кодона, лизину, аспартату, аспарагину, глутамату, глутамину, фенилаланину, тирозину, гистидину и цистеину — по два, а метионину и триптофану — по одному кодону. Три кодона — ПАА, НАС и иСА [c.172]

    Расшифровка генетического кода открыла перед исследователями ряД новых интересных возможностей. Информация, получаемая при установлении первичной структуры генов, может с помощью генетического кода легко переводиться в информацию о структуре кодируемого белка. Это в ряде случаев весьма существенно, так как техника секвенирования ДНК на сегодняшний день существенно проще, чем для белков. Правда, для такого перевода необходимо решить несколько нетривиальных задач. Во-первых, нужно правильно разбить установленную нуклеотидную последовательность на кодоны. Во- торых, нужно найти положение кодона, соответствующего первой аминокислоте полипептидной цепи. [c.173]

    Адапторную функцию тРНК обеспечивают акцепторная ветвь, к З -концу которой присоединяется эфирной связью аминокислотный остаток, и противостоящая акцепторной ветви антикодоновая ветвь, на вершине которой находится петля, содержащая антикодон. Антикодон представляет собой специфический триплет нуклеотидов, который комплементарен в антипараллельном направлении кодону мРНК, кодирующему соответствующую аминокислоту. [c.187]

    Триплеты из аденина, цитозина, урацила и гуанина на информационной РНК (кодоны) действуют как специфические места посадки для комплементарных триплетов (антикодонов), расположенных на молекулах транспортных РНК, у которых привязаны соответствующие аминокислоты. Специфичность стыковки кодона и антикодона обусловливается специфичностью образования водородных связей между аденином и урацилом и цитозином и гуанином. Например, для аланина кодоном является триплет G A, следовательно, антикодоном— GU. Фенилаланин кодируется триплетами иии или ииС, глицин — GG или GGA, GGG, GGU. [c.719]

    Наконец рибосома присоединила последнюю аминокислоту, полностью закончив синтез полипептида, кодируемого мРНК. О терминации полипептида сигнализирует один из трех терминирующих кодонов мРНК, расположенный непосредственно за кодоном последней аминокислоты. Терминирующие триплеты UAA, UAG и UGA не кодируют никакую аминокислоту. Их называют бессмысленными триплетами (нонсенс-триплетами). Первоначально они были обнаружены при исследовании изменения одного-единственного нуклеотида в некоторых кодонах, соответствующих определенным аминокислотам. Это изменение приводило к возникновению нонсенс-мутанитов Е.соИ, для которых была характерна преждевременная терминация синтеза полипептидных цепей. С помощью таких нонсенс-мутантов, по- [c.941]

    Для трансляции всех кодонов, соответствующих определенным аминокислотам (число этих кодонов 61), необходимо как минимум 32 тРНК. [c.951]

    Кодоны для аминокислот представляют собой специфические тройки нуклеотидов (триплеты). Нуклеотидная последовательность в кодонах была установлена в результате экспериментов с использованием синтетических мРНК известного нуклеотидного состава и известной нуклеотидной последовательности. В аминокислотном коде почти каждой аминокислоте соответствует несколько кодовых слов. Третья буква каждого кодона гораздо менее специфична, чем первые две про нее говорят, что она качается . Стандартные слова генетического кода, вероятно, универсальны для всех организмов, правда в митохондриях человека найдены кодоны, значение которых отличается от универсального. Инициирующая аминокислота N-формилметионин кодируется кодоном AUG, причем для ее взаимодействия с этим кодоном необходимо наличие с 5 -стороны от AUG инициирующего сигнала с повышенным содержанием А и G. Триплеты UAA, UGA и UAG не кодируют никакую аминокислоту, они служат сигналами терминации полипептидной цепи. В некоторых вирусных ДНК одна и та же нуклеотидная последовательность может кодировать два разньсх [c.961]

    Предсказание антикодонов, исходя из кодонов. Большинству аминокислот соответствует больше чем один кодон, больше чем одна тРНК и больше чем один антикодон. Напишите все возможные антикодоны для четырех глициновых кодонов (5 ) GGU (3 ), GG , GGA и GGG. [c.963]

    Поскольку книга Дэвидсона вышла в свет в 1965 г., неудивительно, что в ней не отражены в полной мере некоторые существенные достижения в области нуклеиновых кислот, которыми были ознаменованы последние 1 /г—2 года. В частности, за это время была полностью расшифрована первичная структура пяти растворимых РНК, причем первичная структура одной из них, а именно валиновой РНК, была полностью выяснена у нас А. А. Баевым с сотрудниками. За это же время Крик в ряде статей опубликовал данные о том, что по крайней мере 62 из 64 кодонов кодируют хотя бы одну из 20 обычных аминокислот, входящих в состав белков. Кроме того, им выдвинута новая гипотеза о механизме взаимодействия 5-РНК, несущих соответствующие аминокислоты, с кодонами информационной или матричной РНК (так называемая у обл-гипотеза ). [c.5]

    В табл. 1 и 2 приведены прямой и обратный словари кодонно-аминокислотный и аминокислотно-кодонный. Составлены они, как положено, по алфавиту. В табл. I в первой строке указан кодон м-РНК, во второй — обозначение аминокислотного остатка, в третьей — название соответствующей аминокислоты. [c.283]


Смотреть страницы где упоминается термин Кодоны, соответствующие аминокислотам: [c.160]    [c.463]    [c.200]    [c.264]    [c.38]    [c.38]    [c.48]    [c.200]    [c.91]    [c.393]    [c.854]    [c.59]    [c.70]    [c.72]    [c.393]    [c.64]    [c.165]    [c.173]    [c.692]   
Смотреть главы в:

Гены -> Кодоны, соответствующие аминокислотам




ПОИСК







© 2024 chem21.info Реклама на сайте