Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные каналы клеточных мембран

    Благодаря механической прочности контакта между стеклом в торце микропипетки и клеточной мембраной мембранный фрагмент можно отделить от клетки, получив доступ к его внутренний поверхности, либо разрушить мембранную перегородку в кончике пипетки и получить сравнительно низкоомный контакт с внутриклеточной средой. В зависимости от условий различают несколько вариантов измерений 1) на микроучастке мембраны с прикрепленной клеткой, 2) на изолированном участке мембраны с внешней поверхностью, обращенной внутрь пипетки, 3) на изолированном фрагменте, внешняя поверхность которого обращена наружу, 4) измерение интегральных токов на целой клетке (метод внутренного диализа). Каждый из вариантов отведения токов имеет свои преимущества. Регистрация в режиме клетка прикреплена обеспечивает условия, наиболее близкие к физиологическим для работы ионных каналов. При этом сохраняются механизмы внутриклеточной регуляции канальной активности и связи канала с периферическими слоями цитоплазмы. Опыты на изолированных фрагментах обеспечивают возможность полного контроля ионного состава растворов с обеих сторон мембраны. Метод внутриклеточного диализа позволяет измерять ионные токи через всю клеточную поверхность на клетках малого размера (диаметр 10-20 мкм) в условиях постепенного вымывания компонентов цитоплазмы и их замещения на раствор, заполняющий микроприсоску. [c.128]


    При резком едвиге елоя матрикеа. навиеаюшего над группой волосковых клеток, стереоцилий отклоняются в сторону на несколько градусов при этом проницаемость клеточной мембраны изменяется и возникает направленный внутрь клетки ток, называемый рецепторным током (рис. 19-48). Величина ответа выходит на плато через 100-500 мкс, что соответствует времени, необходимому для открытия ацетилхолин-активируемого катионного канала в нервно-мышечном соединении, но гораздо меньше, чем нужно для возникновения электрических изменений при активации любого из известных рецепторов, не связанных с каналами. Поэтом> кажется весьма вероятным, что механический стимул непосредственно открывает ионный канал. Как показали эксперименты с изменением внеклеточных концентраций ионов, механически регулируемый ионный канал, подобно рецептору ацетилхолина, практически одинаково проницаем для всех небольших катионов, и проходящий через него ток образуют главным образом ионы калия. (Ионная среда внутри уха несколько необычна, и на мембране волосковой клетки создается большой электрохимический градиент К . ) По в какой части волосковой клетки находятся такие каналы и как преобразование сигнала связано со сложным строением клетки  [c.340]

    Интересная мутантная парамеция названа пешкой по аналогии с пешкой из игры в шахматы. Дикий тип меняет направление движения на обратное, когда встречает препятствие, а пешка может плыть только вперед (рис. 12.6). Сейчас известно, что обратное движение есть результат притока ионов кальция, который следует за стимулом. Этот вход кальция воздействует на двигательный механизм жгутиков, так что некоторое время они действуют в противоположном направлении. У пешки кальциевый канал изменен и ионы Са + не попадают в него. Другой мутантный организм, как и дикий тип, меняет направление движения, но продолжает плыть в обратном направлении иногда несколько минут. Это происходит из-за мутации одного из типов ионных каналов клеточной мембраны, которых здесь идентифицировано больше, чем в нейронах. [c.360]

    ГОДЫ быстрое развитие иммунологии, клеточной биологии и нейробиологии стало возможным именно потому, что клеточные мембраны рассматривались не только как интересные структурные образования, но и как высокоактивные кооперативные системы. Будучи извлеченной из мембраны, отдельная молекула по определению теряет важную часть своих функций, и даже ее структура сохраняется только при ограниченных условиях. Биохимик, который выделяет ионный канал или пору нервной мембраны, похож на гурмана, пытающегося добыть дырку от бублика. [c.36]


    Различают два вида диффузии веществ через клеточные мембраны — пасочную (без переносчика) и облегченную (с участием вещества- переносчика). При пассивной диффузии происходит произвольное движение веществ через поры (отверстия) в мембранах клеток или через липиды мембран. Через поры диффундируют многие продукты обмена (НдО, СО2, МНз и др ) также кислород. Поры имеются не только в плазматических мембранах клетки, но и в ядерных мембранах (рис. 28). Через эти поры внутрь ядра проходят белки, из которых образуются рибосомы, а также нуклеотиды, из которых синтезируются нуклеиновые кислоты. Из ядра в цитозоль клетки выходят рибосомы и отдельные виды нуклеиновых кислот. Жиры и жирорастворимые вещества, например витамины, проникают через клеточные мембраны благодаря их растворению в липидном слое этих мембран. При облегченной диффузии движение вещества через мембрану обеспечивается веществом-пере-носчиком. Переносчик либо вращается в мембране, либо образует канал только для определенного вещества, что создает возможность его диффузии по градиенту концентрации. Так транспортируются небольшие молекулы веществ, например ионы металлов и глюкоза, через клеточную мембрану в цитозоль. [c.75]

    Естественно, что любая клеточная мембрана благодаря протеканию разнообразных метаболических процессов, в частности, связанных с превращением липидов, отличается по структуре от идеальной искусственной бислойной мембраны. Помимо метаболитов фосфолипидов и жирных кислот поверхностные мембраны содержат интегральные белки, некоторые из которых, являясь селективными ионными порами, существенно снижают величину электрического сопротивления бислоя. В частности, высокая проницаемость для хлора свойственна эритроцитарной мембране. Это объясняется тем, что основной интегральный белок мембраны эритроцитов белок полосы III) выполняет функцию анионного канала. [c.36]

    Нейромедиаторы, действующие на клетку путем открывания ионных каналов, вызывают биологический эффект в течение миллисекунд. Столь быстрый эффект, возможно, объясняется тем, что рецепторы нейромедиаторов сами формируют канал. Кроме того, рецепторы нейромедиаторов сконцентрированы на малом участке мембраны, поэтому при связывании агонистов создаются высокие локальные токи, способные вызывать возбуждение всей клеточной мембраны. [c.175]

    Согласно Пасечнику, элементарным механочувствительным устройством служит ионный канал клеточной мембраны. Его ре- [c.419]

    Большинство белковых рецепторов клеточной поверхности можно отнести к одному из трех классов в зависимости от механизма, используемого для передачи сигнала. Каналообразующие рецепторы - это регулируемые медиаторами ионные каналы, участвующие главным образом в быстрой синаитической передаче сигналов между электрически возбудимыми клетками. Для управления такого рода каналами используется небольшое число нейромедиаторов, которые на короткое время открывают или закрывают образуемый рецепторами канал, изменяя таким образом ионную проницаемость плазматической мембраны, а тем самым и возбудимость постсинантической клетки. Изучение последовательностей ДНК, кодирующих эти рецепторы, показало, что они относятся к одному семейству гомологичных белков, насквозь пронизывающих мембрану. Эти рецепторы обсуждаются в гл. 19 (разд. 19.3) и здесь рассматриваться не будут. [c.354]


Смотреть страницы где упоминается термин Ионные каналы клеточных мембран: [c.128]    [c.628]    [c.272]    [c.126]    [c.92]    [c.34]    [c.143]    [c.164]   
Смотреть главы в:

Биофизика -> Ионные каналы клеточных мембран




ПОИСК





Смотрите так же термины и статьи:

Иониты мембраны

Мембрана клеточная



© 2025 chem21.info Реклама на сайте