Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложная структурная единица ССЕ строение

    Нефтяные фракции, состоящие из смеси полярных и неполярных соединений, взаимодействуют с надмолекулярными структурами и образуют на их поверхности сольватные оболочки различной толщины. Полученная дисперсная частица сложного строения способна к самостоятельному существованию и называется сложной структурной единицей (ССЕ). Характерной ее особенностью является разница поверхностных энергий между надмолекулярной структурой и сольватным слоем и между сольватным слоем и дисперсионной средой. Из ССЕ могут образовываться золи (свободно-дисперсные системы) и гели (связанно-дисперсные системы). [c.34]


    ГЕН, участок молекулы ДНК (у нек-рых вирусов — РНК), в к-ром закодирована информация, обеспечивающая развитие определ. признака (св-ва) у данного организма и его передачу в ряду поколений. Участки нуклеиновой к-ты, кодирующие аминокислотную последовательность белков или последовательность оснований транспортных и рибо-сомных РНК, наз. структурными Г. Последние вместе с необходимыми для их функцион. выражения регуляторными участками объединяются в более сложные генетич. единицы — опероны. Многие Г. высших организмов имеют прерывистое строение кодирующие части гена (экзоны) чередуются с некодирующими вставками (интронами). [c.125]

    Формирование и строение сложных структурных единиц [c.71]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Главное отличие мицеллы от сложной структурной единицы состоит, во-первых, в том, что в образовании последней могут принимать участие углеводороды любого строения, в том числе и дифильного, обладающие различным потенциалом межмолекулярного взаимодействия, и, во-вторых, в том, что размеры [c.71]

    Дисперсионная среда состоит из смеси полярных и неполярных соединений и взаимодействует с надмолекулярными структурами, в результате этого вокруг надмолекулярной структуры (ассоциата или комплекса) формируются сольватные оболочки. Такая дисперсная частица сложного строения (надмолекулярная структура + сольватный слой) способна к самостоятельному существованию и получила название сложной структурной единицы (ССЕ). [c.42]

    Структура твердого вещества во многих случаях складывается не из одинаковых, а из разных структурных единиц, нередко и очень сложных, и не путем одного лишь межмолекулярного взаимо-действия но и при участии межатомных связей, которые, как мы отмечали, могут возникать и разрываться в процессе отвердевания. При этом одни части структуры фиксируются под некоторыми углами по отношению к другим ее частям. Ясно, что о плотнейшей укладке структурных единиц при сколько-нибудь значительном участии в процессе отвердевания ковалентных связей не может быть речи. В таких случаях часто образуются не кристаллические, а аморфные вещества с непериодическим строением или вещества, частично кристаллические, частично аморфные. Не удивительно, что последние чаще всего встречаются среди полимеров, в структуре которых главную роль играют ковалентные связи, а структурные единицы, из которых строятся подобные вещества,— это молекулы и макромолекулы нередко самой разнообразной кон-, фигурации. [c.7]


    Переходя в кристаллическое состояние, вещество освобождается от некоторой части своей энергии. Кристаллическое состояние характерно для неживой природы. В аморфное же состояние вещество переходит, аккумулируя энергию. Аморфное, точнее непериодическое строение вещества более характерно для живой природы. Известно, что в организмах с полной воспроизводимостью синтезируются сложнейшие вещества непериодического, но регулярного строения. Механизм биосинтеза в главных чертах известен. Его важнейшая особенность — принудительная, а не самопроизвольная, как в обычных процессах отвердевания, укладка структурных единиц с затратой, а не выделением энергии в окружающую среду. Энергия, необходимая для перемещения и укладки структурных единиц, т. е. для понижения энтропии системы, доставляется химическими реакциями. Заметим, что первичным ее источником является солнце. [c.161]

    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    На примере представителей гомологического ряда сложных ароматических эфиров разработан способ и получены фазово-чистые полиморфные модификации ЖК. Образцы паспортизованы с использованием параллельно методов прецизионного ДТА и рентгеноструктурного анализа (в частности, впервые получены сведения о строении и упаковке структурных единиц в твердых полиморфных модификациях ЖК указанного класса). Т.О., впервые продемонстрирована возможность ликвидации разнобоя в публикуемой информации о термодинамических свойствах ЖК [c.103]

    Очевидно, нельзя рассчитывать на получение одного какого-нибудь варианта структуры даже при самой точной регулировке условий отвердевания некристаллического вещества. Но, как мы увидим ниже, в принципе не исключена сборка структурных единиц по программе, которая обеспечивает воспроизводимое получение твердого вещества какого угодно сложного непериодического, но регулярного строения. В отличие от самопроизвольных процессов отвердевания процессы планомерной сборки структурных единиц могут идти только при притоке энергии извне, которая затрачивается на принудительное размещение структурных [c.178]

    Разнообразны и сложны а т о м н о - м о л е к у л я р н ы е соединения, в которых структурные единицы связаны межмолекулярными и межатомными связями. К ним относятся обезвоживаемые гидроксиды алюминия, цинка, титана и других d-элементов (см. 1.11). Образующаяся при этом твердая фаза в зависимости от условий дегидратации имеет переменный состав, включает в себя ряды твердых веществ, близких по составу, строению и массе. В пределах таких рядов близких химических соединений, мало отличающихся по составу и стехиометрии, кристаллическая структура может сохраняться — образуется область гомогенности (см. 1.7), имеет место перерыв в непрерывности . [c.137]

    Таким образом, любое твердое вещество, сколь угодно сложное по составу, можно выразить формулой А Вт (п и т — число структурных единиц А и группировок В в частице). Поскольку в нашей модели группировки В являются концевыми, то они оказываются структурно-чувствительными элементами твердых веществ, т. е. по отношению В/А при равных значениях п можно составить представление о строении сравниваемых веществ. [c.10]

    Структурные единицы (исходные надмолекулярные структуры, промежуточные и конечные их виды) имеют сложное строение, обусловленное природой и геометрической формой макромолекул высокомолекулярных [c.68]

    К сложным веществам немолекулярного строения нельзя применять понятие относительная молекулярная масса . Поскольку структурными единицами таких веществ являются не молекулы, а условные формульные единицы, к ним применим термин относительная формульная масса . Она обозначается М г(Х). [c.5]

    Мы считали, что при повороте - -2-го звена вокруг i-[-1-го имеется одно положение с минимумом и одно с максимумом энергии. В более сложных по своему строению цепях может быть, естественно, несколько положений равновесия, разделенных несколькими потенциальными барьерами. Это не вызовет каких-либо принципиальных отличий в конечных формулах. Полученные нами выражения для пох азывают, что реальная цепь ведет себя так, как будто она свободно сочлененная, но состоит из больших звеньев X, число которых Z меньше, чем число структурных единиц Z. Статистическая длина f = Z k . Вместе с тем контурная длина макромолекулы — величина, не зависящая от способа, каким разбивается цепь на звенья [c.73]


    Таким образом, сложное строение кристаллического полимера, являющегося своеобразной жидкой фазой (по отношению к цепным молекулам), формально аналогично роевому строению обычных жидкостей. По существу же характер роев в кристаллическом полимере отличен от характера роев в обычных жидкостях, так как последние ни при каких условиях не являются новой фазой, а достаточно крупный рой в кристаллическом полимере по отношению к звеньям, как структурным единицам, является новой фазой. [c.91]

    В работах [1—4] при исследовании строения полимеров было показано, что существуют два типа элементарных структурных единиц, которые являются основой для создания более сложных структур глобулы, представляющие собой свернутые молекулярные цепи, и пачки, образующиеся нри агрегации развернутых молекул. Уже сравнительно хорошо изучены условия образования кристаллов высокомолекулярных соединений на ряде полимерных веществ. В то же время известно, что в зависимости от условий приготовления и природы полимера образуются самые разнообразные вторичные структуры. Изучение вторичных структур полимеров обычно проводилось путем приготовления образцов из разбавленных растворов. [c.131]

    Структурные единицы (исходные надмолекулярные структуры, промежуточные и конечные их виды) имеют сложное строение, обусловленное природой и геометрической формой макромолекул ВМС, поверхностными силами между ними, взаимодействием дисперсной фазы с диснерсионной средой и другими факторами. Нефтяные фракции, состоящие из смеси полярных и неполярных соединений, взаимодействуют с надмолекулярными структурами, в результате чего вокруг надмолекулярной структуры (ассоциата или комплекса) формируются сольватные оболочки различной толщины. Такая дисперсная частица сложного строения (надмолекулярная структура+сольватный слой) способна к самостоятельному существованию и получила название сложной структурной единицы (ССЕ). [c.13]

    Строение и свойства сложных структурных единиц зависят от компонентной основы, формирующей надмолекулярную структуру. Сложные структурные единицы мотут иметь постоянные свойства только в данной определенной дисперсионной среде и при неизменности факторов воздействующих на систему. Наличие сложных структурных единиц придает системе специфичные свойства и в значительной степени отражается на ее параметрах, например устойчивости против расслоения. [c.47]

    Строение сложной структурной единицы и локальных флокул сходно с мицеллой, Однако между ними имеются существенные различия, наиболее принципиальным из которых является то, что в мицелле можно зафиксировать качество и четко определить границы ядра и некоторого переходного, граничного слоя на его поверхности, образованного, как правило, молекулами поверхностно-активных веществ. В сложной структурной единице, а тем более в локальной флокуле границы ядра, сорбционно-сольватного слоя и дисперсионной среды достаточно размыты. Дальнейшие коагуляционные взаимодействия сложных структурных единиц приводят к возникновению в системе более сложных локальных структурных образований, характеризующихся неярко выраженными центральной областью и переходным слоем. Соотношение компонентов в сложной структурной единице, возможно, оказывает решающее влияние па процессы формирования надмолекулярных структур и сольватных слоев, а следовательно, и на устойчивость и структурно-механическую прочность нефтяных дисперсных систем. [c.49]

    Наряду с изучением падлтолекулярпого строения аморфных полимеров большое и принципиальное значение имели работы В. А. Каргина в области исследования структуры и природы кристаллического состояния полимеров. Совместно с Г. Л. Слонимским он подверг теоретическому рассмотрению один из принципиальных вопросов — вопрос о фазовом состоянии полимеров. Анализируя принципиальную особенность полимерных систем, заключающуюся в том, что в случае гибких цепных макромолекул имеют место две структурные единицы — макромолекула и звено, выступающие в ряде процессов как независимые структурные единицы, В. А. Каргин впервые указал на расхождение структурных и термодинамических критериев оценки фазового состояния систем, построенных из макромолекул. Критический анализ термодинамических свойств кристаллических полимеров и самого понятия фазы в применении к таким сложным системам, как частично кристаллические полимеры, позволил прийти к однозначному выводу о том, что кристаллические полимеры представляют собой однофазные дефектные системы. [c.8]

    Характер изменения проводимости, как и микротвердости, при введении таллия в стеклообразные селениды мышьяка свидетельствует об образовании в составе стекол сложных структурных единиц, содержащих все три компонента. По составу и строенйю/эти структурные единицы близки к тройному соединению НАзЗез. Повышение проводимости стеклообразных селенидов мышьяка с увеличением содержания таллия определяется нарастающим содержанием в составе стекла этих трехкомпонентных структурных единиц. Вновь образующиеся трехкомпо- [c.197]

    Как известно, из двух главных структурообразующих факторов (ненаправленные силы межмолекулярного взаимодействия, отличающиеся дальнодействием, и направленные короткодействующие межатомные связи) первый представляет собой кристаллообразующее начало, обусловливающее плотную укладку структурных единиц в симметричные периодические структуры, отвечающие минимуму свободной энергии второй ответствен за строение самих структурных единиц, а для твердых атомных соединений — и за порядок их соединения в структуре соответствующих твердых веществ, например полимеров. Подчеркнем, что речь должна идти именно о порядке сборки структурных единиц, что беспорядочное строение аморфных веществ — не фатальная необходимость, а лишь следствие того, что природа не позаботилась вложить во все процессы отвердевания механизмы, примиряющие конкуренцию различных структурообразующих факторов. Но мы знаем, что существуют и такие процессы, в которых действие различных структурообразующих факторов определенным образом направлено в сторону образования регулярных, хотя часто и непериодических структур. Это процессы биологического синтеза. Известно, что в таких процессах действует программирующее устройство — матрица, по структуре которой строятся сложнейшие полимеры, и притом, как правило, с совершенной воспроизводимостью. [c.158]

    Повышенная способность меди и таллия к стеклообразованию с селенидами мышьяка, а также громадное влияние этих металлов на электропроводность и другие физико-химичес ше свойства связаны, по-видимому, с тем, что в отличие от других металлов медь и таллий взаимодействуют не с одним, а с обоими компонентами халькогенидного стекла. При этом в составе стекла образуются сложные структурные единицы, содержащие все три компонента. По составу и строению образующиеся в стекле структурные единицы близки к соответствующим индивидуальным соединениям. Ковалентная составляющая химической связи в таких тройных соединениях больше, чем в селенидах таллия и меди. Поэтому образующиеся сложные структурные единицы способны взаимодействовать с ковалентно-увязанной пространстЬенной структурой халькогенидного стекла, принимать участие в проводимости и оказывать влияние на другие физико-химические свойства стекла. [c.204]

    Вывод по анатомической характеристике древесины покрытосемянных двудольных пород. По сравнению с древесиной хвойных пород, строение которой сравнительно простое, древесина покрытосемянных двудольных обладает большим количеством характерных анатомических признаков и различных отклонений от них. Это положение является частично результатом присутствия в этом классе древесных пород сложной структурной единицы, известной под названием сосуда — трубчатого канала, простирающегося вдоль оси ствола и возникающего в результате слияния клеток в продольном ряду, что объясняется полным или частичным растворением их торцовых стенок. Сосуды лиственной древесины значительно отличаются друг от друга по размеру, числу, толщине стенок, типу пор, виду перфораций и ссединению. Эти различия частично объясняют большое количество видов пористой древесины (ильм, ясень, дуб, каштан и пр.). Еще большую сложность древесине этих видов (по сравнению с древесиной хвойных пород) придает значительно больший объем продольной и лучевой паренхимы. Это происходит за счет увеличения размера и в некоторых случаях количества сердцевинных лучей, которые поэтому часто видны достаточно ясно. Накскеи, разнообразие в строении древесины лиственных пород по сравнению с древесиной хвойных пород не может быть объяснено особенностями деятельности камбия у тех и других деревьев в этом меристематическом слое имеется только два вида зародышевых клеток. Однако в покрытосемянных двудольных деревьях продольные материнские клетки сильно укорочены в результате происходит больше скользящего роста (по крайней мере при образовании самых длинных волокнистых элементов) и, что особенно показательно, больше разновидностей древесных элементов дифференцируется от дочерних клеток, возникающих в результате деления продольных материн- [c.66]

    Известны также попытки составления математического описания на базе представлений о строении ССЕ остаточного нефтяного сырья и данных изучения распределения дезактиваторов по радиусу зерна катализатора [128]. Эм модели сложны, многопараметричны и включают ряд условных допущений и приближений ввиду отсутствия точных и надежных методик оценки ряда параметров таких, как коэффициенты диффузии, размеры структурных единиц сырья и пр. Ввиду сложности требуется применение для решения их быстродействующих ЭВМ и такие модели на современном этапе могут представить лишь общетеоретический интерес, [c.142]

    Однако это уравнение отражает рассматриваемую зависимость лишь в суммарной форме. В действительности эти с оотношения являются более сложными. Релаксация в той илн другой степени относится ко всем формам перемещения частиц в материале, но скорость релаксации их в данном полимере при одинаковых вйешних условиях может различаться в сильной степени. Перемещения электронов практически не задерживаются, перемещения же атомов и атомных групп и изменения их колебательного движения задерживаются в различной степени в зависимости от их массы и характера связи, а также степени связанности их с другими частицами. Это существенно влияет на диэлектрические свойства полимеров. То же относится и к перемещениям или изменениям конформации отдельных звеньев цепей и макромолекулы в целом, причем последние сильно зависят от степени полимеризации и от строения цепей. При повышении степени полимеризации скорость релаксации уменьшается. Еще больше усложняются эти соотнощения в полимерах, содержащих структурные единицы, различные по составу и строению, т. е. в сополимерах, привитых полимерах и пр. В общем существует некоторый комплекс времен релаксации, характеризующий различную скорость релаксации разных форм перемещения частиц в данном полимере. Кроме того, из внешних условий на скорость релаксации существенно влияет давление. При повышении давления увеличивается напряжение и соответственно уменьшается время релаксации. Это широко используется на практике при формовании изделий из полимерных материалов. Время релаксации зависит также от присутствия в полимере других веществ. Так, на введении в полимер специальных пластификаторов основан один из методов увеличения скорости релаксационных процессов. [c.581]

    ИНСУЛИН — гормон поджелудочной железы, регулирующий процессы угле- водного обмена и поддерживающий нормальный уровень сахара в крови. И. вырабатывается в р-клетках поджелудочной железы. И, — простой белок, наименьшая структурная единица его 2б1Нз77 вб0753с, молекулярная масса 5733. В водных растворах И. существует в виде крупных ассоциированных молекул. И.— первое сложное биологически активное вещестпо, строение которого удалось полностью расшифровать. И.— бесцветный кристаллический продукт, т. пл. 233 С, малг.растворим в воде, растворяется в разбавленных кислотах [c.109]

    Атомы, из которых сложен остов твердого вещества, являются его структурными единицами. В общем случае структурные единицы имеют более сложный состав и строение, могут состоять из нескольких атомов, например SiOi >B кремнеземе. В твердых веществах сложного состава химические связи между атомами остова самые разнообразные, однако положение упрощается, если использовать понятие о структурных единицах. Тогда можно выявить общий принцип для твердых тел характер связей [c.9]

    До конца XIX в. атомы считались неделимыми. Однако по мере накопления опытных данных пришлось отказаться от таких представлений, так как многие факты показывали, что атомы имеют сложное строение. Это подтверждал и периодическ1п"1 закон Д. И. Менделеева. Еще в 1871 г. Д. И. Менделеев писал Легко предположить, что ныне пока нет еще возможности доказать... что атомы простых тел суть сложные вещества, образованные сложением некоторых еще меньших частей, что называе.мое нами неделимым (атом) — неделимо только обычными химическими силами... Выставленная мною периодическая зависимость между свойствами и весом, по-впдпмому, подтверждает такое предчувствие . Это убедительное косвенное указание на сложность атомов, построенных из более мелких структурных единиц. О том же говорят явления электролиза, прохождения электрического тока в газах и радиоактивности. [c.26]

    Вероятно, процесс образования вторичных структур протекает на основе уже имеющихся в растворе пачечных образований, аналогичных роям, обнаруживаемым в низкомолекулярных жидкостях. Но эти рои или пачки не следует идентифицировать с коллоидными частицами, поскольку растворы полимеров являются термодинамически равновесными системами. Однако 1ШД0 напомнить, что рои, достигающие довольно больших размеров, существуют продолжительное время. Благодаря этому они могут являться теми первичными структурными элементами, из которых строятся все более сложные структуры. В зависимости от условий эти первичные структуры — пачки цепей — могут быть более или менее регулярными, от чего будет зависеть характер образующихся в дальнейшем вторичных структур. Поэтому благодаря возможности образования регулярных по строению и одинаковых по размеру структурных единиц можно получить и единичные кристаллы. Условия возникновения единичных кристаллов особенно благоприятны в монодисперспых системах. [c.154]

    До сих пор мы говорили о ламелярной структуре блочных полимеров, не касаясь вопроса о возможности организации их в более сложные НМС. Между тем, ламели в блоке очень часто располагаются сферически симметрично, образуя шаровые структуры, известные под названием сферолитов. Сферолити-зация — один из самых распространенных способов кристаллизации. К настоящему времени накоплено большое число экспериментальных данных в отношении строения сферолитов, и основные выводы, сделанные на базе этих исследований, обсуждаются во многих монографиях [7, 39, 61], поэтому основное внимание мы уделяли строению и взаимосвязанности составляющих их структурных единиц — ламелей. Наш интерес к этим вопросам вызван тем, что, как следует из анализа экспериментальных данных, многие физико-химические свойства сферолитных образцов (прочность, деформируемость, электропроводность, механические динамические свойства и др.) зависят именно от этих параметров. [c.49]

    В полимерах, имеющих сферолитное строение, пластическая деформация развивается сложнее. Элементарными структурными единицами сферолитов также являются ламели (или вырожденные ламели — фибриллы). Однако в силу сферически симметричного расположения их в сферолите, ориентация ламелей по отношению к растягивающей силе может быть любой. Поскольку механизм деформации существенно зависит от угла между нормалью к поверхности ламели и направлением действующей силы, результат приложения силы в разных точках сферолита различен (поле сил и деформаций негомогенно и анизотропно). В отдельных участках при некоторых заданных условиях деформирования напряжения могут превышать либо предел прочности, либо предел текучести различных элементов структуры. Там, где напряжения превышают прочность структурных образований, возникают трещины если же напряжения больше, чем предел текучести, происходит пластическая деформация. Кроме того, степень связанности ламелей в сферолите гораздо больше, чем в образцах, рассмотренных в разделе 1.4. [c.188]


Смотреть страницы где упоминается термин Сложная структурная единица ССЕ строение: [c.13]    [c.95]    [c.69]    [c.154]    [c.10]    [c.8]    [c.520]    [c.166]    [c.107]    [c.166]    [c.162]    [c.53]   
Нефтяной углерод (1980) -- [ c.13 , c.14 ]

Нефтяной углерод (1980) -- [ c.13 , c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте