Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейромедиаторы рецепторы

Рис. 8.2. Схема никотинового холинэргического синапса. Пресинаптическое нервное окончание содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). После синтеза (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти синаптические везикулы сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором (IV). В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется потенциал действия, т. е. химический сигнал снова превращается в электрический нервный импульс.) Наконец, медиатор инактивируется , т. е. либо расщепляется ферментом (VI), либо удаляется из синаптической щели посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— холин — поглощается нервным окончанием (VII) и используется вновь. Базальная мембрана — диффузная структура, идентифицируемая методом электронной микроскопии в синаптической щели (рис. 8.3,а), здесь не показана. Рис. 8.2. Схема <a href="/info/1561416">никотинового холинэргического синапса</a>. <a href="/info/567158">Пресинаптическое нервное окончание</a> содержит компоненты для <a href="/info/11666">синтеза</a> нейромедиатора (здесь ацетилхолина). После <a href="/info/11666">синтеза</a> (I) <a href="/info/101629">нейромедиатор</a> упаковывается в пузырьки (везикулы) (II). Эти <a href="/info/265924">синаптические везикулы</a> сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и <a href="/info/101629">нейромедиатор</a> высвобождается таким путем в <a href="/info/103587">синаптическую щель</a>. Он диффундирует к постсинаптической мембране и связывается там со <a href="/info/32074">специфическим рецептором</a> (IV). В результате образования <a href="/info/101629">нейромедиатор</a>-<a href="/info/1356492">рецепторного комплекса</a> <a href="/info/102673">постсинаптическая мембрана</a> становится проницаемой для катионов (V), т. е. деполяризуется. (Если <a href="/info/17914">деполяризация</a> достаточно <a href="/info/499796">высока</a>, то появляется <a href="/info/109300">потенциал действия</a>, т. е. химический сигнал снова превращается в электрический <a href="/info/169060">нервный импульс</a>.) Наконец, <a href="/info/101004">медиатор</a> инактивируется , т. е. либо <a href="/info/1569005">расщепляется ферментом</a> (VI), либо удаляется из <a href="/info/103587">синаптической щели</a> посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— <a href="/info/1413">холин</a> — поглощается <a href="/info/566996">нервным окончанием</a> (VII) и используется вновь. <a href="/info/509001">Базальная мембрана</a> — диффузная структура, идентифицируемая <a href="/info/117537">методом электронной микроскопии</a> в <a href="/info/103587">синаптической щели</a> (рис. 8.3,а), здесь не показана.

    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]

    Особого внимания заслуживает ненасыщенная жирная кислота, называемая арахидоновой. Она высвобождается фосфолипазой Аг и выступает как в роли предшественника простаглан-динов, тромбоксанов и лейкотриенов, так и в роли важного клеточного регулятора (или сама по себе, или после окисления липоксидазой). Было показано, например, что арахидоновая кислота стимулирует гуанилатциклазу обусловленное нейромедиатором образование сОМР (гл. 9), видимо, регулируется высвобождением арахидоновой кислоты, опосредованным рецептором. С другой стороны, образование сАМР в ряде тканей регулируется, вероятно, некоторыми простагландинами. [c.44]

    Как известно, клетки нервной системы (нейроны) не имеют непосредственного контакта друг с другом. Они разделены синаптическими щелями, через которые сигнал (передаваемый в виде бегущей по нейронной мембране волны поляризации-деполяризации) пройти не может без определенного посредника, называемого нейромедиатором (или нейротрансмиттером). Передача нервного импульса от одного нейрона к другому происходит следующим образом (рис. 3, схема А). По достижении нервным сигналом конца возбужденной клетки (нейрон 1) в ее пресинаптической области синтезируется нейротрансмиттер (АХ), который затем выбрасывается в синаптическую щель и быстро диффундирует к своему рецептору (R), расположенному в постсинаптической мембране покоящейся клетки (нейроне 2). [c.31]


Рис. 9,8. Рецептор нейромедиатора в мегибране. а — электронная микрофотография постсинаптической мембраны никотинового холинэргического синапса, выделенного из электрической ткани Torpedo. Напоминающие бублик структуры— это рецепторы (электронная микрофотография предоставлена М, Гир- Рис. 9,8. Рецептор нейромедиатора в мегибране. а — <a href="/info/73091">электронная микрофотография</a> <a href="/info/102673">постсинаптической мембраны</a> <a href="/info/1561416">никотинового холинэргического синапса</a>, выделенного из электрической ткани Torpedo. Напоминающие <a href="/info/1429608">бублик</a> структуры— это рецепторы (<a href="/info/73091">электронная микрофотография</a> предоставлена М, Гир-
    Какова природная функция рецепторов алкалоидов опия Логично предположить, что они предназначены для связывания каких-то нейромедиаторов или модуляторов. В последние годы было показано, что следующие два пентапептида (называемые энкефалинами), а таюке [c.345]

    Скорость переноса метаболитов через мембраны, разделяющие различные отсеки клетки, ограничена и строго контролируется на поверхности мембран расположены рецепторы, являющиеся мишенями для большинства гормонов и нейромедиаторов эти рецепторы могут подвергаться химической модификации. [c.68]

    На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспе-цифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита (например, фармакофорной группировки) его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей - водородных, электростатических, ван-дер-ваальсовых, гидрофобных. [c.13]

    Наряду с АХ известны и другие нейромедиаторы. Таковыми являются адреналин, норадреналин, дофамин и некоторые другие вещества. После связывания АХ с рецептором открываются [c.385]

    Рецепторы нейромедиаторов исключительно важны для молекулярной нейробиологии, так как они играют ключевую роль при переносе нервных импульсов и являются центрами важных регуляторных процессов и тех изменений, которые происходят при некоторых нервных заболеваниях. Поскольку такие рецепторы представляют собой мишень действия многих нейрофармакологических препаратов, они представляют как практический, так и теоретический интерес. Поэтому биохимия рецепторных молекул — одно из наиболее активно развивающихся сейчас направлений нейрохимических исследований. [c.241]

    До сих пор только один рецептор, никотиновый ацетилхолиновый рецептор, был тщательно очищен и биохимически охарактеризован. Но этого оказалось мало для создания общей теории связи между структурой рецептора и его функцией. Очевидно, что рецепторы имеют двойную функцию они принимают и узнают специфические сигналы и одновременно инициируют первую стадию клеточного ответа на сигнал. Наряду с другими своими функциями рецепторы нейромедиатора регулируют ионную проницаемость постсинаптической мембраны (рис. 9.1) Связывание молекулы медиатора сопряжено, таким образом, с ответным открытием ионных каналов. Вопрос механизма функционирования рецепторов сводится по сути к представлению а механизме такого сопряжения. [c.243]

    При изучении нейромедиаторов важное значение имеет подбор специфических агонистов, имитирующих действие медиатора, или антагонистов, блокирующих это действие. В зависимости от чувствительности к одной или другой группе соединений холинэргические нейроны делятся на мускариновые (активируемые мускарином, рис. 16-6) или никотиновые (активируемые никотином) [46]. Мускариновые рецепторы, имеющиеся во многих нейронах автономной нервной системы, специфически блокируются атропином и декаметонием (рис. 16-6). Никотиновые синапсы присутствуют в ганглиях и скелетных мышцах. Их ингибиторами являются кураре и активный компонент этого яда D-тубо-курарин (рис. 16-6), а также белок из змеиного яда а-бунгаротоксин (рис. 16-7). Этот токсин был, в частности, использован для титрования рецепторов ацетилхолина в моторной концевой пластинке диафрагмы крысы. Было показано, что количество рецепторов в расчете на одну пластинку составляет примерно 4-10 (или 13000 рецепторов на [c.332]

    Исходя из такой интерпретации, рецептор нейромедиатора (или гормона) должен существовать по крайней мере в двух состояниях неактивном или состоянии покоя (I) и в активном (А) состоянии (рис. 9.2). Равновесие между этими состояниями зависит от природы нейромедиатора (или гормона). Соединения, которые, подобно медиатору, благоприятствуют активному состоянию, называются агонистами, а те, которые смещают равновесие в сторону неактивного состояния,— антагонистами. Обсудим несколько моделей, используемых для количественного анализа результатов и установления взаимосвязи между концентрацией и ответом в случае медиаторов и других фармакологически активных соединений. [c.247]


    Для любого специалиста в этой области — работает ли он в основном с ферментами или с рецепторами — трудно отличить одну модель от другой. В случае нейромедиаторов интерпретация экспериментальных данных даже более затруднена, так как антагонист всегда ингибирует связывание агониста. Он может также ингибировать одну из стадий процесса, протекающую после связывания, например транспорт ионов через открытый канал, закрыв его как пробка в трубке, или сопряжение между связывающим центром медиатора и ионным каналом, т. е. открывание канала. Первый механизм, по-видимому, лежит в основе действия многих местных анестетиков, тогда как второй относится к некоторым эффекторам адренэргических рецепторов (см. ниже). [c.248]

    Физиологически рецепторы функционируют как регуляторные белки. Число, сродство и активность рецепторов находятся под контролем различных механизмов регуляции. Они также являются местом действия многочисленных экзогенных эффекторов, а именно лекарств и токсинов. Некоторые заболевания нервной системы имеют рецепторную природу (миастения и, возможно, шизофрения). Некоторые, так называемые рецепторы, особенно участки связывания лекарств, могут быть в действительности регуляторными связывающими центрами или субъединицами истинных комплексов нейромедиатор — рецептор. Таким образом, мягкие транквилизаторы, бенздиазепины и барбитураты, которые усиливают ингибиторное действие GABA-эргических нейронов, по-видимому, действуют путем стимуляции связывания GABA с ее рецептором. [c.300]

    На многих тканях показано, что десенсибилизация рецепторов — это не разрушение, не инактивация гормонсвязывающих белко В, а восстановление чувствительности — это не синтез белка de novo. При длительном воздействии гормонов и нейромедиаторов рецепторы переходят в латентное состояние. Устранение гормона из организма или же применение антагониста приводит к демаскировке соответствующих рецепторов. [c.152]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]

    В 1999 г. был открыт необычный нейромедиатор - D-серин, HO H2 H(NH2) OOH. Оказалось, что эта правосторонняя а-аминокислота вырабатывается в организме человека из левосторонних а-аминокислот (из их L-форм). Еще одна неожиданность заключалась в том, что биосинтез D-серина осуществляется не в самих нейронах, а в астроцитах - клетках, покрывающих нейроны. Из астроцита этот нейромедиатор затем диффундирует в нервную клетку и взаимодействует со специальными рецепторами. Начинается разработка лекарственных веществ, регулирующих активность фермента, контролирующего синтез D-серина. Эти лекарства, как ожидается, могут оказаться полезными при инсультах, гипертонических кризах и помогут защищать нейроны от необратимых повреждений. [c.38]

    Механизм их биодействия связан, по-видимому, с активацией главного нейромедиатора торможения в ЦНС - у-аминомасляной кислоты (ГАМК) - посредством воздействия на специфические бензодиазепиновые рецепторы. [c.174]

    По данным [1031, в отличие от [101], некоторые другие органы крыс также способны в незначительной степени связывать диазепам. Немеченый диазепам и другие бенздиазепины вытесняли его радиоактивный аналог, который был связан с митохондриями печени, почек и легких крыс. Вещество Ro 4884, которое очень слабо вытесняло диазепам, связанный с мембранами мозга, обладало чрезвычайно выраженной способностью вытеснять диазепам, связанный с митохондриями почек. В то же время клоназепам — сильный ингибитор взаимодействия диазепама с мембранами мозга — слабо влиял на сродство последнего к митохондриям почек. Специфическое связывание Н-диазепама с препаратами толстого и тонкого кишечника, а также скелетных мышц не выявлено. Трипсин химотрипсин полностью подавляли специфическое связывание диазепама с препаратами мозга и почек. Таким образом, рецепторы для бенздиазепинов отличаются от всех известных в мозгу рецепторов, с которыми взаимодействуют нейромедиаторы. [c.263]

    Д-специфич нейромедиатор для дофаминовых рецепторов, в больших дозах стимулирует также а- и р-адре-норецепторы и т обр увеличивает сердечный выброс, вызывая небольшие изменения артериального давления, а также силу и частоту сердечных сокращений без увеличения общего периферич сопротивления В отличие от адреналина и норадреналина уменьшает сопротивление сосудов кишечника и почек, увеличивает почечный кровоток и диурез (см также Адреномиметические средства и Kamexoi-амины) [c.115]

    Осн. ф-ция К.-активация мн. ферментов аденилатциклазы, фосфодиэстеразы циклич. нуклеотидов, киназы фосфо-рилаз и легких цепей миозина (киназы-ферменты, катализирующие перенос фосфорильной группы с АТФ на субстрат), Са -зависимой протеинкиназы цитоплазмы и мембран, фосфолипазы Aj и др. Благодаря этому он влияет на гликогенолиз и липолиз, секрецию нейромедиаторов, адренергич. передачу регуляторного сигнала, изменяет функциональные св-ва рецепторов, ускоряет активный транспорт Са в сердце и мозге, препятствует гуанозинтрифосфат-зависимой полимеризации тубулина (белок, из к-рого состоят жгутики и реснички клеток животных и растений), влияет на скорость деления клеток. [c.293]

    Ингибирование ферментов лежит в основе действия антибиотиков и других химиотерапевтических препаратов (см., например, дополнение 6-А). Однако многие лекарственные препараты взаимодействуют с рецепторами, расположенными на клеточной поверхности, которые не являются ферментами в обычном смысле этого слова. Согласно теории рецепторов, разработанной примерно в 1937 г., близкие по структуре лекарственные препараты часто оказывают аналогичное действие, поскольку связываются с одним и тем же рецептором. В нормальных условиях рецептор может связывать гормон, нейромедиатор или какой-либо метаболит, структурно близкий лекарственному препарату. С"вязывание с соответствующим рецептором препаратов одного класса, называемых в фармакологической литературе агонистами, вызывает в клетке ту же реакцию, что и связывание гормона. В то же время соединения с родственной структурой могут. действовать и как антагонисты связывание их с рецептором не вызывает должного ответа. Вза имоотношения агониста и антагониста часто носят конкурентный характер, подобный конкурентному ингибированию ферментов. [c.32]

    В книге четко сформулированы основные проблемы и достижения нейрохимии, выделены ключевые вопросы. Обсуждение построено с привлечением большого числа примеров разнообразных объектов, процессы функционирования нейроклеток рассмотрены во взаимосвязи с другими сторонами деятельности живых организмов. В книгу включен прекрасный иллюстративный материал, помогающий усваивать довольно непростые концепции и гипотезы, касающиеся наиболее сложных высших функций живой природы — работы нервной системы. Строение и функции нейрональных мембран, механизмы синаптической передачи и характеристика рецепторов нейромедиаторов, ионные каналы и активный транспорт — вот наиболее важные и существенные проблемы, которые подробно рассмотрены. В книге хорошо отражена связь нейрохимии с развитием других смежных направлений — нейрофизиологии, нейрофармакологии, нейроэндокринологии и т. д. [c.5]

    Трансдуцин, также называемый G-белком, удивительно похож на N-белки — описанные в гл. 9 мембранные компоненты, передающие некоторые гормональные сигналы или сигналы нейромедиаторов от их рецепторов к ферменту аденилатциклазе. И трансдуцин, и N-белки состоят из трех полипептидных цепей <х, и и механизмы их действия, по-видимому, очень сходны. Подобие системы родопсин — трансдуцин — фосфодиэстераза и системы -адренэргический рецептор — N-белок — аденилатцик-лаза так велико, что возможна, например, перекрестная рекомбинация (замена) отдельных компонентов этих систем. В одном из таких экспериментов по реконструкции было показано, что трансдуцин способен передавать сигналы от -рецепторов к аденилатциклазе в клетках с недостаточным количеством N-белка. [c.18]

    Неясно, почему А] (или Р2) вызывает заболевание более того, почему симптохмы проявляются на относительно малом участке пораженного организма Предполагают [20], что причина, вероятно, связана со структурной аналогией между триптофаном в положении 116 на А1 (см. выше) и нейромедиатором серотонином (5-гидрокситриптамином) ЭАЭ, таким образом, возникает как иммунный ответ на рецептор серотонина, препят-ствуюший нормальному действию серотонина в качестве нейро-медиатора в специфических областях центральной нервной системы. Если данное предположение удастся доказать, то, возможно, это будет первый шаг к хемотерапии заболевания. [c.106]

    Как мы увидим в гл. 9, специфичность и разнообразие эффектов, вызываемых относительно небольшим количеством нейромедиаторов, присутствующих в нервной системе, значительно возрастает благодаря механизму множественных рецепторов. Так, например, а- и р-рецепторы подразделяются на а и ссг, Р1 и Рг. Имеются Вр и Ог-рецепторы в допаминэргических и Нг и Нг-рецепторы в гистаминэргических окончаниях. Мускариновый и никотиновый ацетилхолиновый рецепторы и г-, у.- и [c.221]

    Опиаты — это лекарства с болеутоляющим и эйфорическим действием. В мозге были обнаружены специфические рецепторы этих лекарств, и фактически, как уже отмечалось, в настоящее время известно несколько типов опиатных рецепторов. Давно предполагалось, что должны существовать и эндогенные лиганды для этих рецепторов, но только в 1974 г. группами Костер-лица и Хьюза и Терениуса и Валстрёма были открыты в экстрактах мозга пептиды, которые обладали свойствами, ожидаемыми для эндогенных опиатов. Пока еще неясно, являются ли эти пептиды истинными нейромедиаторами или просто нейромодуляторами здесь приведен краткий обзор имеющихся по этому вопросу данных. [c.233]

    В настоящее время термин рецептор применяется в двух различных значениях. Во-первых, этим термином обозначают первичные приемники сенсорных стимулов — света, осязания, температуры и боли. В этом смысле рецептор представляет собой орган, состоящий из одной или более клеток палочки и колбочки ретины (сетчатки) являются, например, фоторецепторами. Во-вторых, термин рецептор описывает на молекулярном уровне связывающий центр для низкомолекулярного активного соединения. Такое определение опять-таки не вполне точно многие исследователи считают рецептором любой центр, который специфично связывает лиганд независимо от их эндогенного или экзогенного происхождения. Нейрохимики же имеют в виду исключительно центры — мишени эндогенных эффекторов типа гормонов, простагландинов и нейромедиаторов. Согласно такому толкованию, термин рецептор не охватывает участки связывания нейротоксинов в аксональных ионных каналах или на ганглиозидах нервной мембраны он относится в основном к пре- и постсинаптическим рецепторам, которые всегда являются белками, связывающими пресинаптически высвобождающийся медиатор и тем самым обеспечивающими первую стадию химического возбуждения мембраны. Данное определение не исключает того факта, что такие рецепторы, как опиатный, обнаружены и охарактеризованы с помощью экзогенных лекарственных препаратов, и это особенно справедливо в тех случаях когда эндогенный медиатор еще неизвестен. [c.241]

    Здесь могут быть использованы методы, известные из энзимологии и белковой химии равновесный диализ, ультрацентрифугирование, гель-хроматография и ультрафильтрация. Основной проблемой является здесь выяснение различий между специфическим и неспецифическим связыванием, в особенности при изучении связывания, проводимом на препаратах мембран и на частично очищенных белковых фракциях. В центральной нервной системе концентрации рецептора могут составлять несколько пикомолей на 1 г ткани, а нейромедиаторы благодаря своим полярным свойствам легко взаимодействуют, хотя и слабо, с полярными мембранными компонентами, расположенными вне рецепторной области. Если даже такое неспецифическое связывание имеет сродство на несколько порядков ниже, чем специфическое связывание с рецептором (т. е. более высокую Ко), оно все же оказывается важным фактором, который следует принимать во внимание из-за большого числа присутствующих неспецифических связывающих центров. Таким образом, обнаружение рецептора в центральной нервной системе посредством изучения связывания возможно, если имеется лиганд с очень высоким сродством и с очень высокой удельной радиоактивностью (>185-10 ° раоп./(с-ммоль). [c.249]

    Для некоторых гормонов и нейромедиаторов вместо сАМР в качестве регулируемого циклического нуклеотида выступает сОМР (рис. 9.12). Так, если допамин, серотонин, адреналин (для рецепторов. 1, р2, аг), гистамин (для Нг-рецептора), октопамин и пептидные нейромедиаторы регулируют систему сАМР, то аце- [c.275]

    Этот первый рецептор нейромедиатора, выделенный из центральной нервной системы, имеет следующие биохимические характеристики он является гликапротеином, состоящим из нескольких полипептидных цепей (по данным электрофореза в ДСН- полиакриламидН Ом геле М 48 000, 59 000 и 92 000) центр связывания стрихнина, по-видимому, локализован на самой короткой полипептидной цепи, и функции других цепей в настоящее время неизвестны рецепторный белок содержит единственный тип независимых связывающих участков для стрихнина. [c.295]


Библиография для Нейромедиаторы рецепторы: [c.369]   
Смотреть страницы где упоминается термин Нейромедиаторы рецепторы: [c.21]    [c.38]    [c.108]    [c.43]    [c.337]    [c.175]    [c.175]    [c.124]    [c.263]    [c.300]    [c.286]    [c.261]    [c.229]    [c.249]    [c.255]    [c.269]    [c.276]    [c.294]   
Биохимия Том 3 (1980) -- [ c.32 ]

Генетика человека Т.3 (1990) -- [ c.122 ]




ПОИСК







© 2025 chem21.info Реклама на сайте