Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модель ключ замок

    Модели ферментативного катализа. В известных в биохимии моделях ключ-замок Фишера и рука-перчатка Кошланда учитываются энтропийные факторы в [c.421]

    Для того чтобы привести эту теорию в соответствие с опытными данными, Кошланд несколько видоизменил модель ключ — замок . Согласно его гипотезе субстрат, присоединяясь й активному центру, изменяет его форму, обеспечивая таким образом идеальное их соответствие. Иными словами, функциональные группы в активном центре принимают специфическую пространственную конфигурацию только тогда, когда их вынуждает к этому присутствие субстрата. [c.203]


Рис. 6.10, Взаимодействие субстратов с ферментами согласно модели клюЧ Замок. Активный центр фермента сам по себе комплементарен по форме субстрату. Рис. 6.10, <a href="/info/325994">Взаимодействие субстратов</a> с ферментами согласно <a href="/info/168947">модели клюЧ Замок</a>. <a href="/info/99728">Активный центр фермента</a> сам по себе комплементарен по форме субстрату.
    В свое время Фишер предложил модель ключ — замок для рассмотрения фермент-субстратного взаимодействия. Фермент и субстрат обладают жесткими структурами, причем фермент подогнан к субстрату как замок к ключу. Ряд фактов противоречит такой модели — взаимодействие фермента с субстратом имеет, по-видимому, не статический, а динамический характер. Кошланд предложил модельную теорию индуцированного структурного соответствия фермента и субстрата. Перечислим исходные положения этой теории, задачи которой состояли прежде всего в объяснении специфичности ферментов, катализируюхцих реакции переноса связи [c.189]

    Модель ключ—замок  [c.79]

    Биологические макромолекулы, в частности пептиды, сохраняют комплементарность межмолекулярных взаимодействий в достаточно широком диапазоне конформаций. Эта их способность лежит в основе каталитической активности ферментов, и модель комплементарного взаимодействия ключ—замок была впервые использована на заре энзимологии. Позднее эта же модель использовалась при обсуждении специфичности связывания антигена с антителом и селективности взаимодействия рецептора с лигандом. [c.29]

    Высокая избирательность рецепторов по отношению к гормону обеспечивается их определенной пространственной конфигурацией. Очень часто взаимоотношение гормон — рецептор объясняют следующей моделью гормон подходит к своему рецептору, как ключ к замку, и никакие другие гормоны не открывают этот замок. [c.123]

    Концепция специфических рецепторов на клеточной поверхности была вьщвинута Паулем Эрлихом в начале XX в. Для объяснения специфичности рецепторов использована модель ключ—замок , ранее разработанная Фишером для селективного ферментного катализа. Нужно отметить, что пространственное совпадение элементов типа ключ—замок — очень устойчивый алгоритм воображения, основанный на бытовых навыках. Огромный экспериментальный материал электроэнцефалографии практически ничего не прибавил к этой механической модели. При моделировании взаимодействия регуляторных пептидов с мембранными рецепторами предполагается, что определенный участок рецептора зеркально и комплементарно соответствует структуре лиганда (Говырин, Жоров, 1994). Внешние участки некоторых рецепторов частично сходны с вариабельной частью молекулы у-глобулина, поэтому на схемах их изображают в виде вилочек. На основании этой же модели предполагается, что некоторые синтетические пептиды могут частично комплементарно совпадать с Рс-участком иммуноглобулинов, возбуждая аллергическую реакцию организма. [c.126]


    Исключительно высокие скорости и степень селективности ферментативных реакций с давних пор интригуют химиков-органиков. Многочисленные предположения, начиная с более чем столетней давности идеи ключ-замок Э.чи-ля Фишера и до более современной ковдегшии взаимоиндуцированного соответствия Кошланда были выдвинуты для объяснения этих явлений. Каковы бы ни были конкретные подробности различных интерпретаций, все они предполагают тот или иной род фиксации субстрата внутри полости активного центра конформационно подвижной молекулы фермента вблизи его реакционноспособных групп. Возникающее в результате взаимодействие между реакционными центрами фермента и реакционноспособной конформацией субстрата считается одной из главных причин высоких скоростей и селективности, свойственных ферментативным реакциям. Дизайн химических структур, пригодных для экспериментального исследования относительной важности различных факторов, определяющих скорости и селективность органических реакций как моделей определенных аспектов ферментативного катализа, был и остается областью, вызывающей напряженное внимание. [c.486]

    Для каталитической активности фермента существенное значение имеет пространственная структура, в которой жесткие участки а-спиралей чередуются с гибкими, эластичными линейными отрезками, обеспечивающими динамические изменения белковой молекулы фермента. Этим изме-неням придается больщое значение в некоторых теориях ферментативного катализа. Так, в противоположность модели Э. Фищера ключ-замок Д. Кощлендом была разработана теория индуцированного соответствия , допускающая высокую конформационную лабильность молекулы белка-фермента и гибкость и подвижность активного центра. Эта теория была основана на весьма убедительных экспериментах, сввдетельствующих о том, что субстрат индуцирует конформационные изменения молекулы фермента таким образом, что активный центр принимает необходимую для связывания субстрата пространственную ориентацию. Иными словами, фермент только в присутствии (точнее, в момент присоединения) субстрата будет находиться в активной (напряженной) Т-форме в отличие от неактивной Я-формы (рис. 4.10). На рис. 4.10 видно, что присоединение субстрата 8 к ферменту Е, вызывая соответствующие изменения конформации активного центра, в одних случаях приводит к образованию активного комплекса, в других—неактивного комплекса вследствие парущения пространственного расположения функциональных групп активного центра в промежуточном комплексе. Получены экспериментальные доказательства нового положения о том, что постулированное Д. Кощлендом индуцированное соответствие субстрата и фермента создается не обязательно изменениями [c.132]

    Старая идея о статической системе со структурным соответствием, идея ключ — замок (Фишер) объясняла специфичность фермента не гибкостью, а жесткостью его структуры, обусловливающей притяжение определенной молекулы субстрата, и стерическое отталкивание незначительно отличающегося аналога. Ряд фактов противоречит этой простой модели. Так, вода и другие малые молекулы, содержащие гидроксил, не участвуют в реакциях переноса гидроксила, катализируемых фосфорилазами и киназами. Напротив, гидроксилсодержащие молекулы большого размера являются в этих случаях субстратами. Зачастую у хорошо сорбируемых активным центром лигандов реакционная способность отсутствует, несмотря на то, что весьма сходные соединения обладают ею. Вместе с тем известны случаи, когда малые молекулы не сорбируются, а их аналоги большего размера хорошо сорбируются активным центром. Фосфотрансацетилаза действует на ацетат, пропионат, бутират, но не на формиат, а р-глюкозидаза действует на глюкозиды, но не на 2-дезоксиглюкозиды. Аналогичные данные приведены в [64, 69]. [c.388]

    Перв1оначальная модель каталитического центра, предложенная Эмилем Фишером, трактовала взаимодействие субстрата и фермента по аналогии с системой ключ — замок . Эта модель, которую иногда называют моделью жесткой матрицы (рис. 8.5), не утратила своего значения для понимания некоторых свойств ферментов, например их способности к строго определенному связыванию двух или большего числа субстратов (рис. 8.6), или для объяснения кинетики насыщения субстратом. [c.79]

    Ранее говорили, что катализатор сходен со сложным ключогд, тонко подходящим разрезами своей бородки к устройству скважины се.фетного замка, закрывающего молекуле путь к реакции в обход большого активационного энергетического барьера. В свете современных воззрений правильно было бы сказать, что модель соответствия ключа и хитрой замочной скважины отражает собой молекулярный уровень мышления с его идеей геометрического соответствия между строением сложной молекулы и строением ее катализатора. Однако легко сообразить, что для открывания современного сейфа тонкой подгонки ключа к замку может оказаться недостаточно. Может быть, надо знать еще и секретный код, приводящий в соответствие ключ и замок, а главное необходимо все же в последнее мпювение, пока ключ еще не вынут, повернуть его и затем потянуть дверцу сейфа к себе. Работа, необходимая для этого, может быть очень малой, но она должна быть сделана и притом быстро, так как продолжительность столкновения молекул (или, что то же, продолжительность пребывания ключа в замке) очень мала. [c.370]


    В холодильниках ЗИЛ-Москва моделей ДХ2М, ДХЗ и КХ-240 дверь шкафа запирается на ключ. В этих холодильниках замок встроен в корпус [c.44]


Смотреть страницы где упоминается термин Модель ключ замок: [c.246]    [c.246]    [c.421]    [c.268]    [c.50]   
Биофизика (1988) -- [ c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Ключ-замок



© 2025 chem21.info Реклама на сайте