Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный центр ферментов функциональные группы

Рис. 15-7. А. Схема, поясняющая механизм действия глицеральдегид-З-фосфатдегадрогена-зы. Между субстратом и 8Н-группой в активном центре фермента возникает ковалентная связь - образуется тиополуацеталь. Этот промежуточный продукт, представляющий собой фермент-субстратный комплекс, окисляется за счет NAD , который также связан с активным центром фермента в результате образуется тиоэфир-ковалентный промежуточный продукт, называемый ацилферментом. Связь между ацильной группой и тиоловой группой фермента характеризуется очень высокой стандартной свободной энергией гидролиза, последнем этапе тиоэфирная связь претерпевает фосфоролиз, в результате чего происходит регенерация свободного фермента и образуется ацилфосфат, сохраняющий в себе значительную часть энергии, высвободившейся при окислении альдегидной группы. Б. Иодацетат является мощным ингибитором глицеральдегид-фосфатдегидрогеназы, потому что он образует ковалентную связь с важной функциональной 5Н-группой фермента и таким образом инактивирует фермент. Рис. 15-7. А. Схема, поясняющая <a href="/info/3768">механизм действия</a> глицеральдегид-З-фосфатдегадрогена-зы. <a href="/info/1320682">Между субстратом</a> и 8Н-группой в <a href="/info/99728">активном центре фермента</a> возникает <a href="/info/1282">ковалентная связь</a> - образуется тиополуацеталь. Этот <a href="/info/6222">промежуточный продукт</a>, представляющий <a href="/info/1795776">собой</a> <a href="/info/187584">фермент-субстратный комплекс</a>, окисляется за счет NAD , который также связан с <a href="/info/99728">активным центром фермента</a> в результате образуется тиоэфир-<a href="/info/1376657">ковалентный промежуточный</a> продукт, называемый ацилферментом. <a href="/info/26849">Связь между</a> <a href="/info/138450">ацильной группой</a> и <a href="/info/1376585">тиоловой группой</a> фермента характеризуется <a href="/info/1586589">очень высокой</a> <a href="/info/629901">стандартной свободной энергией гидролиза</a>, последнем этапе <a href="/info/490432">тиоэфирная связь</a> претерпевает фосфоролиз, в результате чего происходит <a href="/info/791843">регенерация свободного</a> фермента и образуется ацилфосфат, сохраняющий в себе значительную <a href="/info/145509">часть энергии</a>, высвободившейся при <a href="/info/46890">окислении альдегидной группы</a>. Б. Иодацетат является мощным <a href="/info/611724">ингибитором глицеральдегид-фосфатдегидрогеназы</a>, потому что он <a href="/info/821391">образует ковалентную</a> связь с важной функциональной 5Н-группой фермента и <a href="/info/461013">таким образом</a> инактивирует фермент.

    Активные центры ферментов содержат, как правило, несколько функциональных групп, принимающих участие в активации субстрата (см. гл. И). Можно представить себе два механизма этого явления все группы обладают однотипной природой, например нуклеофильной Ми  [c.94]

    Активный центр фермента — совокупность функциональных групп, пептидных связей и гидрофобных участков в молекуле ферментного белка, на которых осуществляются химические превращения.  [c.186]

    В активных центрах ферментов обнаружены функциональные группы, способные присоединять или отш,еплять ион водорода в области pH, оптимальной для проявления ферментативной активности (см. [c.258]

    Образование активного центра из функциональных групп, довольно далеко отстоящих друг от друга в полипептидных цепях, но совмещенных пространственно в активном центре (т. е. на уровне третичной структуры белка), позволяет ферменту за счет конформационных изменений обеспечивать необходимое соответствие между активным центром и молекулами реагирующих веществ (их обычно называют субстратами). Благодаря изменению конформации фермента происходит как бы приспособление , подгонка активного центра к структуре молекул, превращение которых ускоряется данным ферментом. [c.24]

    Активный центр состоит из ряда функциональных групп, определенным образом ориентированных в пространстве. Среди них различают группы, входящие в состав каталитически активного участка, т. е. группы, принимающие непосредственное участие в каталитическом акте. Контактный, якорный, или адсорбционный, участок активного центра включает функциональные группы, обеспечивающие специфическое сродство, т. е. связывание фермента с субстратом. Это разделение условно, условно и отграничение активного центра от остальных частей молекулы фермента. Однако можно принять, что активный центр — это такой, который включает, как минимум, все контактные группы фермента, участвующие в образовании активированного комплекса, т. е. отстоящие в этом комплексе от молекулы субстрата не дальше чем на длину межатомной связи (2,3 А). [c.92]

    Следует напомнить об известных трудностях идентификации функциональных групп активных центров ферментов по величинам рК, полученным из изучения зависимости скорости реакции от pH. Во-первых, одна и та же группировка в белках разного строения может иметь неодинаковое значение рК из-за влияния соседних групп. Некоторую помощь в этом случае может оказать измерение теплоты диссоциации ионогенных групп, рассчитываемой по измерениям температурной зависимости рК. К сожалению, для холинэстераз эти термодинамические константы достаточно надежно не измерены. Согласно данным Шукудза и Шинода [122], теплоты диссоциации основной группировки ацетилхолинэстеразы эритроцитов и холинэстеразы сыворотки крови человека составляют соответственно 8,5 и 6,5 ккал1моль. Эти величины выше или ниже найденной для диссоциации имидазольной группы гистидина в других белках (6,9—7,5 ккал моль [123]). Если признать, что в обеих холинэсте-разах в качестве основной группировки активного центра выступает имидазол гистидина, то трудно понять столь существенное различие в величинах теплот диссоциации. Во-вторых, даже если измерение активности фермента при разных pH рассматривать в качестве своеобразного титрования функциональных групп активного центра, то полученные результаты нельзя безапелляционно считать отражением прямого участия этих групп в каталитическом акте. Можно представить, что ионы Н и ОН -среды выполняют свою функцию, вызывая не только протонизацию или депротонизацию функциональных групп активного центра, но также и более общую функцию создания и поддержания специфической для каждого фермента третичной структуры. Можно думать, что в создании третичной структуры фермента большую роль играют ионные связи между такими группировками, которые расположены вне активного центра и непосредственно не участвуют в реакции с субстратом. Такие ионогенные группировки при взаимодействии могут сближать друг с другом (или наоборот удалять друг от друга) определенные функциональные группы белка, которые непосредственно участвуют в каталитическом акте. Внешне эта непрямая роль кислотно-основных группировок фермента будет отражаться в форме обычной зависимости кинетических констант (и, V, Кт) от pH, но по существу такая зависимость не дает оснований для решения вопроса, является ли она следствием влияния pH на конформацию белка в районе активного центра или диссоциацию группировки, прямо участвующей в реакции с субстратами. [c.184]


    Сульфгидрильная группа цистеина обладает способностью образовывать дисульфидные (ковалентные) и водородные связи, которые также участвуют в создании и поддержании макроструктуры ферментов. При образовании водородной связи с участием протона сульфгидрильной группы повышается электронная плотность вокруг атома серы, что приводит к возрастанию его нуклеофильности. Кроме того, в активном центре ферментов сульфгидрильная группа активирована соседними (в макроструктуре) функциональными группами фермента имидазольной группой гистидина и карбоксильными группами. [c.205]

    Не исключено, что при этом активные центры и функциональные группы ферментов не участвуют в этом и адгезия является следствием изменения физико-химических свойств среды, на которой выращивают плесневые грибы. [c.41]

    В активных центрах ферментов в рамках относительно жесткой третичной структуры белка взаимодействующие функциональные группы уже в исходном состоянии реакции в гораздо большей степени сближены и сориентированы, чем в большинстве неферментативных внутримолекулярных процессов. [c.66]

    Мы остановились на этих примерах, чтобы показать возможности расшифровки взаимодействий между активным центром фермента и лигандами. Химия выявляет поведение функциональных групп фермента и кофакторов. Однако этого недостаточно для количественного объяснения ферментативной активности, характеризуемой понижением энергии активации. Для ферментативного катализа необходима вся белковая глобула. Нельзя отрезать часть белковой цепп без ущерба для активности фермента. Химия не отвечает на вопрос о роли глобулярной структуры, описывая лишь события в активном центре. Эти задачи стоят перед физикой. [c.186]

    Таковы в основном современные представления об общих механизмах ферментативного катализа. Для дальнейшего изложения необходимо сделать существенное замечание. Строго говоря, до сих пор здесь не использовали количественный анализ механизмов катализа, для чего необходимо, очевидно, построение конкретных физических моделей этого процесса. Ясно, что понимание механизмов требует детального изучения электронных взаимодействий в активном центре между функциональными группами. Эти взаимодействия осуществляются в целом на гораздо более коротких расстояниях по сравнению с невалентными атом-атомными взаимодействиями, определяющими характер внутримолекулярной динамики белковой глобулы фермента. [c.427]

    При воздействии кавитационного ультразвука происходит необратимая инактивация лизоцима [64], вызванная, видимо, разрушением какой-либо важной для каталитической активности функциональной группы активного центра фермента. В роли такой лабильной группы могут выступать, например, остатки триптофана 62, 63 или 108 активного центра лизоцима, модификация которых приводит к потере ферментативной активности [66—69]. Умень-ше(гие ферментативной активности лизоцима ирй озвучивании раствора фермента следует кинетике первого порядка [64]. [c.160]

    В активных центрах ферментов содержится обычно две или более каталитических групп. Они могут воздействовать на субстратную группу двумя совершенно различными путями. Один из них заключается в том, что нуклеофильный, или общий основной катализ протекает одновременно с общим кислотным, в одном и том же переходном состоянии. Механизм этого типа, приложимый к гидролизу сложных эфиров, представлен в (15). Этот механизм часто постулировался в качестве вероятной модели катализа более чем одной функциональной группой, однако при исследовании модельных систем не было получено серьезных свидетельств в его поддержку [32]. Для реакций, подверженных нуклеофильному или общему основному катализу, общий кислотный катализ не характерен (и наоборот). Другой способ предусматривает действие двух каталитических групп по отдельности на различных стадиях сложной реакции. Если одна из групп специфично действует на скоростьопределяющей стадии такой реакции, в результате чего скоростьопределяющей становится уже следующая стадия, то именно на последней необходимо действие второй каталитической группы (примером такого процесса является описанный в предыдущем разделе гидролиз сложных эфиров диметилмалеиновой кислоты). [c.471]

    При изучении механизма химической реакции, катализируемой ферментами, исследователя всегда интересует не только определение промежуточных и конечных продуктов и выяснение отдельных стадий реакции, но и природа тех функциональных групп в молекуле фермента, которые обеспечивают специфичность действия фермента на данный субстрат (субстраты) и высокую каталитическую активность. Речь идет, следовательно, о точном знании геометрии и третичной структуры фермента, а также химической природы того участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Участвующие в ферментативных реакциях молекулы субстратов часто имеют небольшие размеры по сравнению с молекулами ферментов, поэтому было высказано предположение, что при образовании фермент-субстратных комплексов в непосредственный контакт с молекулой субстрата, очевидно, вступает ограниченная часть аминокислот пептидной цепи. Отсюда возникло представление об активном центре фермента. Под активным центром подразумевают уникальную комбинацию аминокислотных остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа (рис. 4.2). Установлено, что у сложных ферментов в состав активного центра входят также простетические группы. [c.122]


    Функциональные группы активного центра фермента наиболее эффективно взаимодействуют с субстратом, имея оптимальную степень ионизации, [c.75]

    Стадией, лимитирующей синтез АТФ, является высвобождение синтезированного АТФ из активного центра фермента в матрикс. Полагают, что энергозависимое протонирование отдельных функциональных групп АТФ-азного комплекса, происходящее за счет энергии АцН , вызывает конформационные изменения в Р компоненте, которые приводят к быстрому высвобождению синтезированного АТФ из активного центра фермента. Важным моментом является обратимость реакции, катализируемой АТФ-азным комплексом. При соответствующих условиях комплекс Рд—Р может расщеплять молекулу АТФ и использовать полученную при этом энергию для транспорта протонов, т. е. для образования на мембране АцН . Согласно концепции, постулированной В. П. Скулачевым, наряду с АТФ используется как конвертируемая валюта для энергетических превращений, протекающих на мембране. В связи с этим было предложено все энергетические превращения в клетке подразделить на две группы протекающие в цитоплазме (источник энергии — АТФ, креатинфосфат и другие макроэрги) и локализованные в мембране, использующие энергию Д йН (рис. 15.9). Следует отметить, что не уникален в качестве сопрягающего иона и у некоторых видов организмов при определенных условиях его может заменить ион натрия. [c.205]

    В 1958 г. Кошланд [6, 7] сформулировал теорию принудительной комплементарности, согласно которой необходимый контакт функциональных групп субстрата с активным центром фермента возникает в ходе самого взаимодействия по мере образования фермент-субстратного комплекса. При этом, очевидно, происходит перестройка структуры активного центра фермента. [c.30]

    Одно из замечательных свойств ферментов — высокая избирательность (селективность) их действия. Под селективностью катализаторов подразумевают их способность различать субстраты, отличающиеся химич. природой реакционноспособной связи, строением групп, непосредственно не участвующих в каталитич. акте, и конфигурацией асимметрич. центра молекулы. Селективность ферментативных реакций связывается со стадией предварительной адсорбции вследствие взаимодействия якорных групп субстрата и связывающих или контактных функциональных групп, входящих в активный центр фермента. Т. о., для осуществления селективности процесса К. п., помимо каталитически активных групп, должен содержать также связывающие группы. Синтетич. селективные К. п. делят на две группы 1) полиэлектролиты (полиамфолиты), работающие в области значений pH, близких к рК полиэлектролита, 2) сополимеры, в состав к-рых наряду с каталитически активными сомономерами входят сомономеры, осуществляющие связывание субстрата за счет сил электростатич. взаимодействия, водородных или гидрофобных связей. [c.478]

    Степень сближения субстрата с функциональными группами активного центра фермента может быть воспроизведена во внутримолекулярных реакциях соответствующим выбором внутримолекулярных расстояний. Подобным же образом можно смоделировать искажение связей в субстрате [210]. [c.134]

    Непосредственными каталитическими функциями обладает не вся молекула фермента активны лишь отдельные функциональные группы фермента, так называемый активный центр. Конфигурация и электрические свойства фермента в целом определяют его способность акцептировать определенный субстрат. Если субстрат акцептируется, то одна из его связей оказывается расположенной как раз над активным центром. Вот тут-то и происходит [c.347]

    Перечисленные функциональные группы в основном обуслов ливают реакционную способность белка и его отдельных фраг ментов (участков). Некоторые из них, как мы увидим ниже, вхо дят в состав активных центров ферментов и принимают непосред ственное участие в осуществлении каталитического акта. Это [c.25]

    Чем выше степень специфичности фермента, тем больше возможностей для создания предположений о строении активного центра фермента. Каждый случай проявления специфичности неизбежно отражает взаимодействие между ферментом и субстратом. Например, любое изменение молекулы глюкозы приводит к значительному уменьшению скорости окисления ее альдегидной функциональной группы глюкозооксидазой. Следовательно, между тем участком активного центра, который осуществляет окисление альдегидной группы, и теми его участками, которые связывают нереагирующие функциональные группы, существует тес- [c.103]

    Каталитически активный центр фермента состоит из функциональных групп боковых цепей аминокислотных остатков. Эти функциональные группы могут находиться рядом друг с другом, а могут далеко отстоять друг от друга в первичной аминокислотной последовательности, но в таком случае они будут про- [c.386]

    Большинство приведенных примеров показывает, что в основе механизма действия самоуничтожающихся ингибиторов ферментов лежит отщепление протона. По этой причине пиридоксальзависи-мые ферменты являются наиболее вероятными объектами такого ингибирования. Б будущем можно ожидать появления еще большего числа ингибиторов пиридоксальзависимых ферментов, механизм действия которых основан на инактивации функциональной группы, обусловленной карбанионной природой промежуточных соединений [315]. Весьма вероятно, что именно создание более селективных ингибиторов активного центра продвинет вперед разработку самоуничтожающихся ферментативных ингибиторов, или инактиваторов. По сравнению с рассмотренными ранее специфичными к активному центру необратимыми ингибиторами преимущество самоуничтожающихся ингибиторов состоит в том, что, будучи относительно нереакционноспособными, они становятся активными после взаимодействия с остатками в активном центре фермента. Активная форма зависит от каталитических особенностей конкретного активного центра. Таким образом, ингибирование катализируется самим ферментом. Однако оба типа ингибирования позволяют вводить метку и идентифицировать группы активного центра и функциональные группы ферментов. [c.458]

    Молекулы реаге 1Т0В (субстраты) и (1 ермснт подходят друг к другу. Молекулы субстратов присоединяются к активному центру фермента, образуя фермент-субстратный комплекс, в котором их функциональные группы удерживаются в нужном положении (рис. VII.1) [c.443]

    Авторы другой теории (Ламри и Эйринг [45, 461, Дженкс [29. 47]) полагают, что силы сорбции используются для создания напряжений (деформаций) в молекулах реагирующих компонентов, способствующих протеканию реакции. Если же активный центр фермента жесткий, то субстрат, чтобы он мог с ним связаться, должен претерпеть некоторую деформацию (см. рис. 17, III). При этом предполагается, что активный центр устроен так, что в результате деформации молекула субстрата активируется (т. е. приобретает некоторые свойства, важные для образования переходного состояния реакции). В противном случае, когда жесткой является молекула субстрата, а конформа-ционно лабилен фермент, схему катализа можно представить так же, как для механизма индуцированного соответствия (рис. 17, II). Легче всего представить индуцированное субстратом (или, в противном случае, белком) искажение конформации, которое включает сжатие (или растяжение) связей или изменение углов между связями. В общем случае, рассматривая строение молекулы субстрата или белка в более общем виде, под напряжением структуры можно понимать также и, например, десольватацию функциональных групп, принимающих участие в химической реакции. [c.60]

    Катализ амидной группой. Амидная группа — наиболее распространенная функциональная группа белков, поэтому ее возможное участие в качестве компонента активных центров ферментов вызывает несомненный интерес. По своим физико-химическим свойствам амидная группа весьма инертна. Это слабая кислота и слабое основание. Например, значение р/Са1 сопряженной кислоты ацетамида равно —0.48, а рЛ[ а2 = 15,1 [29]. Каталитические свойства амидной группы в межмолекулярных гидролитических реакциях неизвестны, однако она способствует значительному ускорению внутримолекулярных реакций. [c.90]

    Решение. Структурные формулы показывают, что ПАБК и сульфаниламид имеют сходные форму и расположение гюлярных функциональных групп. Сульфамидные препараты действуют как ингибиторы, связываясь с активным центром фермента и блокируя действие ПАБК. Лишенные этого активного ингредиента процессы обмена веществ у бактерий прекращаются, и они погибают. [c.454]

    В самом общем виде механизм ферментативной реакции включает последовательность событий в активном центре фермента, протекающих в пространстве и во времегп- и изменяющих определенные химические связи субстрата. Первым актом в цепи этих событий является образование физического контакта между ферментом и превращаемым субстратом, последним — уход продуктов из активного центра и возвращение фермента к прежнему состоянию. Таким образом, описание механизма ферментативного катализа должно включать число и последовательность элементарных (индивидуальных) стадий реакции наряду с численными величинами констант скоростей этих стадий (временное описание событий, или кинетический механизм реакции) и характер участия функциональных групп фермента в данных превращениях (пространственное описание событий). [c.168]

    Эта грубая схема, во многом сходная с предложенным строением мицеллы детергента [9], достаточно ясно показывает, как удаленные части полипептидной цепи сблил<аются в наиболее выгодной конформации. Рассмотрим участок первичной структуры белка-фермента (рис. 24.1.1). Процесс сворачивания, вызывающий сближение гидрофобных групп, собирает в этих точках как полипептидную цепь, так и боковые радикалы близлежащих аминокислотных остатков. Если последние несут функциональные группы, то можно легко заметить, что на данном участке структуры белка может возникнуть весьма точное пространственное расположение нескольких таких групп. Таким образом, в процессе сворачивания в характеристическую стабильную конформацию линейного полипептида, образовавшегося в процессе биосинтеза белка, формируется активный центр фермента. По-видимому, именно таким образом возникли первые ферменты, когда оказывалось, что определенные расположения функциональных групп, случайно возникшие указанным выше путем, обладали важными каталитическими свойствами. [c.452]

    Все пять функциональных групп в случае их расположения в активных центрах ферментов могут выступать в роли нуклеофилов. Они, как было показано, могут также действовать как нуклеофильные катализаторы в соответствующих модельных системах. Основные требования состоят в том, что образующийся интермедиат— ангидрид на схеме (8) — должен быть реакционноспособиее исходных соединений и нуклеофильный агент должен быстро замещать уходящую группу, т. е. Кз к на схеме (8). В противном случае тетраэдрический интермедиат (3) будет просто распадаться на исходные вещества. Это требование ясно продемонстрировано на примере реакции, приведенной на схеме (8), гидролизе арил- [c.461]

    Ферменты являются белками, поэтому любые агенты, вызывающие денатурацию белка (кислоты, щелочи, соли тяжелых металлов, нагревание), приводят к необратимой инактивации фермента. Однако подобное инак-тивирование относительно неспецифично, оно не связано с механизмом действия ферментов. Гораздо большую группу составляют так называемые специфические ингибиторы, которые оказывают свое действие на какой-либо один фермент или группу родственных ферментов, вызывая обратимое или необратимое ингибирование. Исследование этих ингибиторов имеет важное значение. Во-первых, ингибиторы могут дать ценную информацию о химической природе активного центра фермента, а также о составе его функциональных групп и природе химических связей, обеспечивающих образование фермент-субстратного комплекса. Известны вещества, включая лекарственные препараты, специфически связывающие ту или иную функциональную группу в молекуле фермента, выключая ее из химической реакции. Так, йодацетат I H,—СООН, его амид и этиловый эфир, пара-хлормеркурибензоат lHg—С Н,—СООН и другие реагенты сравнительно легко вступают в химическую связь с некоторыми SH-группами ферментов. Если такие группы имеют существенное значение для акта катализа, то добавление подобных ингибиторов приводит к полной потере активности фермента  [c.147]

    Сам каталитический акт химической реакции происходит в фермент-субстратном комлексе, состоящем из субстрата и активного центра фермента, образованного из определенных функциональных групп аминокислот, кофермента, иногда ионов металла, строго фиксированных в пространстве. [c.13]

    Математическая модель Кошланда, целью которой является оценка кинетических вкладов в общую скорость реакции, не учитывает ожидаемой взаимной компенсации потенциального (эн-тальпинного) и кинетического (энтропийного) активационных ленов, которая обычно наблюдается при переходе от некаталитических процессов низших порядков к каталитическим процессам высших порядков. Почти любая ферментативная реакция может быть представлена в виде процесса, протекающего с участием одной функциональной группы, выполняющей каталип -ческие функции. Если считают, что в активный центр фермента входит более одной фупкционалыюй группы, то это означает, что дополнительные группы выст пают в роли катализаторов, облегчающих работу одной акцепторной группы. Однако каждая дополнительная группа, выступающая в роли катализатора и входящая в состав активного центра, должна снплоть энтальпию активации процесса. Поскольку в ферментативной реакции все каталитические группы в активном центре правильно ориентированы по отношению к акцепторной группе, энтропия активации, обусловленная переносом групп п т. д., не должна уменьшаться. Однако для реакций в растворе каждый [c.135]

    Это так называемая первичная структура фермента, где К — боковые остатки, или важнейшие функциональные группы белков, возможно, выступающие в качестве активных центров ферментов. Структура этих остатков, а также соответствующие аминокислоты и величины трКа функциональных групп приведены в табл. 4. [c.90]


Смотреть страницы где упоминается термин Активный центр ферментов функциональные группы: [c.132]    [c.160]    [c.169]    [c.488]    [c.188]    [c.204]    [c.535]    [c.347]    [c.270]    [c.271]    [c.82]    [c.54]   
Химия биологически активных природных соединений (1970) -- [ c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активность фермента

Активные ферментов

Активные центры ферменто

Активный центр

Функциональные группы



© 2024 chem21.info Реклама на сайте