Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность стенок различной формы

    С помощью номограмм, рассчитанных по приведенному уравнению, можно определить для каждой температуры и толщины стенки пресс-формы требуемое время вулканизации изделия. Из-за различия теплопроводности и теплоёмкости различных резиновых смесей необходимо эмпирически получить подобную номограмму для каждой рецептуры. [c.502]


    Формы проявления кризиса различаются в зависимости от степени заполнения термосифона, т. е. отношением объема жидкой фазы теплоносителя при нормальных условиях к внутреннему объему всего термосифона ее или к объему зоны нагрева е . В общем случае при вертикальном положении двухфазного термосифона возможны два основных режима 1) вся внутренняя поверхность термосифона покрыта пленкой жидкости 2) в испарителе имеется некоторый уровень жидкости, а остальная поверхность термосифона покрыта пленкой жидкости. При работе термосифона в первом режиме его предельный тепловой поток будет несколько выше для коротких термосифонов (Ь < 0,5), чем во втором. Однако из-за сложности поддержания такого режима в практике следует применять второй, более надежный режим. В первом режиме при критической тепловой нагрузке возможно высыхание пленки жидкости в нижней части вследствие ее нехватки. Во втором режиме сухое пятно на стенке может появиться в любом месте по длине испарителя. Термосифоны — теплопередающие устройства, обладающие высокой теплопроводностью. Однако существуют ограничения, определяющие максимальную, переносимую тепловую мощность трубой (ограничения по радиальному тепловому потоку в зоне подвода теплоты и различные ограничения, связанные с взаимодействием потоков жидкости и пара — ограничения вследствие уноса капель и звуковой предел). Они вытекают из существующего или скоростного предела циркуляции рабочей жидкости теплоносителя. [c.250]

    В заверщение следует указать и другие дополнительные эффекты, учитываемые различными авторами, при сохранении общей схемы процесса, описанной в 2.2. Теплота, отводимая от стенки, затрачивается не только на испарение жидкости, но и на перегрев пара в зазоре под сфероидом этот эффект учитывается относительно просто [1.1, 2.4, 2.7] увеличением теплоты парообразования на величину Срп(Гс—7 )/2. Для мелких капель, взвешенных в сфероидальном состоянии над нагретой поверхностью в виде сферы, рассматривалось ламинарное течение пара в зазоре сложной формы между нижней полусферой капли и плоской стенкой [2.26] это приводит к необходимости применения численного метода, что ограничивает практическую ценность результатов. В этой же работе [2.26] рассматривалось излучение от стенки как на верхнюю, так и на нижнюю половину сферической капли. Результаты ка чественно согласуются с полученными в данном параграфе лучистый поток составляет примерно 60% лри температуре стенки 7 с=500°С и примерно-30% при температуре стенки Гс=280°С. Исследования скорости испарения капель различных размеров- были проведены в [2.24, 2.25]. Численным методом была рассчитана форма капли, зависящая от ее объема, и получены выражения для средней толщины капли и площади основания, представляющего собой поверхность теплообмена. Толщина (высота) капли связана с объемом зависимостью, аппроксимированной ломаной линией с тремя прямолинейными участками, соответствующими каплям трех классов малым, большим и расширенным. Для каждого класса капель получено выражение для коэффициента теплоотдачи, соответствующего температурному напору АТ—Тс—Т, и переносу теплоты в паровом зазоре теплопроводностью. Малыми каплями по [2.24] считаются капли, объем которых удовлетворяет условию  [c.75]


    Графический метод решения уравнения теплопроводности, называемый иногда методом Шмидта [12], не требует сложных вычислений и позволяет получить практические решения нестационарных задач с различными граничными условиями. Однако он применим лишь для тел простейших геометрических форм или простых составных тел, таких как ряд параллельных плоских стенок. [c.24]

    Соединения кремния встречаются в природных водах в форме различных минеральных и органических соединений. Это — кремниевая кислота, ее соли (гидросиликаты и силикаты), а также частицы различных алюмосиликатов в коллоидном и взвешенном состоянии и органические соединения кремния. Концентрация кремния в природных водах обычно не превышает нескольких миллиграммов в литре, но в водах северных рек она выше и может достигать десятков мг/л. Соединения кремния вызывают образование на стенках теплообменной аппаратуры трудноустранимой накипи, имеющей малую теплопроводность. [c.62]

    Характер движения жидкости определяется причиной, вызывающей его, поэтому различают вынужденное и свободное движение. Под вынужденным понимают такое движение, которое появляется в результате внешнего воздействия на движущуюся жидкость. В качестве примера можно привести движение жидкости, подаваемой по трубе насосом или компрессором. Свободное движение осуществляется благодаря внутренним причинам (например, движение, вследствие разности удельных весов прн различных температурах жидкости). С другой стороны, различают движение по характеру перемещения отдельных частиц с параллельными траекториями—ламинарное и с беспорядочными—турбулентное движение. Для определенной жидкости при постоянной температуре и заданной форме канала ламинарное движение существует только до некоторой предельной критической скорости. При больших скоростях оно становится турбулентным. Для процесса теплообмена между жидкостью и стенкой большое значение имеет характер движения. При ламинарном движении благодаря параллельности струй передача тепла от жидкости к стенке возможна только путем теплопроводности. При турбулентном движении, вследствие хаотического движения частиц, перенос тепла осуществляется путем теплопроводности и конвекцией вместе с перемещающимися массами жидкости происходит перенос тепла из слоев нагретых в более холодные. Особенно характерным является движение жидкости внутри трубы. Как показали опыты, при турбулентном движении непосредственно около стенки образуется слой жидкости с ламинарным движением. Этот слой, называемый пограничным (рис. 163), оказывает существенное влияние на теплообмен. В ядре роль конвекции доста- [c.320]

    Общий расход тепла на неустановившееся тепловое состояние тем меньше, чем тоньше стенка и ниже коэфициент теплопроводности и чем больше время собственно сушки по сравнению с временем загрузки и выгрузки. Рациональность применения в некоторых случаях для периодически действующих сушилок тонких стен из изоляционных материалов видна из приводимой ниже таблицы, где даны расходы тепла для сушильной камеры для литейных форм и стержней при длительности сушки в 16 час. при различной изоляции. [c.65]

    МИ колебаниями от главных циркуляционных насосов, гидродинамическими усилиями от изменения скоростей и направлений потоков теплоносителя в первом контуре, тепловыми пульсациями от недостаточного перемешивания потоков теплоносителя, вибрациями и колебаниями от сейсмических нагрузок. Сложный спектр высокоскоростных и вибрационных механических и тепловых нагрузок имеет место при различных аварийных режимах, связанных с возможным разрывом главных трубопроводов первого контура и динамическим смещением опор корпуса реактора при мощных землетрясениях и разрывах. Характер и анализ перечисленных выше статических и циклических нагрузок и связанных с ними напряжений приведены в нормах расчета на прочность [1, 2]. Перечисленные выше нагрузки создают в корпусах и других элементах первого контура водо-водяных реакторов соответствующие номинальные напряжения. Учитывая сложность конструктивных форм этих элементов, неравномерное распределение температур по толщине стенок каждого элемента и между отдельными элементами, а также различие в физико-механических свойствах (коэффициенты линейного расширения, теплопроводность), суммарные местные напряжения могут значительно (в 2-3 раза и более) превосходить номинальные. По данным [1, 2, 6, 23, 29-37], коэффициенты концентрации напряжений о от механических нагрузок (равные отношению местных напряжений в различных зонах корпуса реактора к номинальным напряжениям в гладкой Щ1линдрическ0й или сферической части) составляют величины порядка 1,5—5. Для некоторых из зон корпуса эти коэффициенты приведены в табл. 1.3. [c.19]


    В прикладной инженерной теплофизике рассматриваются задачи при смешанных граничных условиях, когда на отдельных частях поверхности тела задается одно из условий (1.29) —(1.31), различных в каждой части поверхности. Например, тепловые расчеты стенок теплоограждающих конструкций, паропроводов и других деталей в форме пластины, полого цилиндра и шаровой оболочки приводят к решению задач нестационарной теплопроводности при смешанных граничных условиях, которые заданэтся в различных сочетаниях условий (1.29) — (1.31) на внутренней и внешней поверхностях стенки. [c.20]

    В трубчатом рекуператоре поверхность теплообмена принимается равной либо внутренней, либо внешней поверхности трубок. В регенераторе тепло передается от газа насадке или от насадки газу через всю поверхность насадки, но каждый из этих процессов (нагрев или охлаждение насадки) занимает только половину времени. Если остальные условия, влияющие на теплообмен, одинаковые, то удвоенная поверхность насадки регенератора равноценна поверхности теплообмена в рекуператоре. При толщине ленты, равной 0,4 мм, из которой обычно изготовляется насадка регенератора, поверхность теплообмена на единицу веса, равноценная поверхности теплообмена витого теплообменника, изготовленного из трубок с толщиной стенки 0,75 мм, будет в 1,9 раза больше. Насадка регенератора может быть изготовлена также из более тонкой ленты, так как диски, из которых она состоит, выдерживают только нагрузку от веса самой насадки. Чем тоньше лента, тем больше поверхность теплообмена на единицу веса. Трубка рекуператора должна выдерживать разность давлений прямого и обратного потоков (4—А,Ъат), и поэтому толщина ее стенки не может быть меньше определенной из условий прочности. В теплообменниках витого типа толщина стенки трубки принимается больше требуемой по условиям прочности для того, чтобы при навивке трубка не сминалась. Большим достоинством насадки регенераторов является ее компактность в 1 м можно разместить более 2000 м поверхности, т. е. в 6—8 раз больше, чем в рекуператоре из гладких трубок. Насадка регенератора может быть изготовлена из различных материалов, в том числе и с малой теплопроводностью, и ей может быть придана форма, наиболее рациональная с точки зрения теплообмена и гидравлических потерь. Необходимо, однако, отметить, что коэффициент теплопередачи в регенераторе Кр) меньше, чем в рекуператоре. Обычно Кр = 50-т- 60 ккал/м Ч°С, в то время как в рекуператоре К = бОч-ЮОтскал/л -ч °С. Увеличение коэффициента теплопередачи в рекуператоре, работающем при тех же давлениях газовых потоков, что и регенератор, достигается [c.359]


Смотреть страницы где упоминается термин Теплопроводность стенок различной формы: [c.638]    [c.638]    [c.193]    [c.85]   
Основные процессы и аппараты химической технологии Кн.1 (1981) -- [ c.270 , c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Стевны

Стейси

Теплопроводность стенок



© 2025 chem21.info Реклама на сайте