Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействующие потоки

    Работа бесконтактных уплотнений динамического действия связана с давлением в системе, создаваемым винтовой поверхностью вращающегося вала, и вихревым эффектом, возникающим при взаимодействии потока жидкости с неподвижной поверхностью втулки. [c.244]

    Сопоставление данных по гидравлическому сопротивлению, теплоотдаче к поверхности зернистого слоя, диффузии и продольному перемешиванию при течении (см. последующие главы) позволяет более ясно понять физическую природу движения жидкости в зернистом слое при различных значениях критерия Рейнольдса. Как и в трубах, при малых значениях Ке пограничный слой заполняет все сечение поровых каналов и распределение скоростей существенно зависит от формы канала, С ростом же Ке пограничный слой сжимается и взаимодействие потока с зернистым слоем (гидравлическое сопротивление) начинает главным образом определяться формой отдельного элемента и характером его поверхности. [c.70]


    Существующие теория и методы расчета процессов тепло- и массообмена в колонных аппаратах базируются, как известно, на схеме идеального противотока. Степень отклонения реального профиля концентраций от гипотетического может быть весьма существенной и зависит от ряда факторов, к числу которых отно- сятся конструктивные особенности аппарата, физико-химические свойства взаимодействующих потоков, их рабочие скорости и др. Таким образом, метод масштабирования колонных аппаратов является заведомо некорректным, если при его использовании не учитывается явление продольного перемешивания. [c.9]

    Основной отличительной особенностью колонных аппаратов рассматриваемого класса, как было сказано ранее, является разделение их на секции горизонтальными распределительными устройствами. В основании каждой секции имеется распределительное устройство, предназначенное для создания тесного контакта взаимодействующих потоков, т. е. максимально возможной межфазной поверхности. Эти распределительные устройства обычна называют тарелками, а колонные аппараты — тарельчатыми. [c.18]

    Колонные аппараты, широко применяемые в химической технологии для проведения процессов контактного тепло- и массообмена, а также химических превращений, работают обычно в режиме встречного движения взаимодействующих потоков жидкостей, газов (паров) и зернистых материалов. При таком направлении потоков, как известно, наиболее полно используется движущая сила протекающих физических и больщинства химических процессов. [c.8]

    Чтобы установить эталон для оценки работы тарелок колонны, вводится понятие об идеальной контактной ступени или теоретической тарелке, характеризующейся тем, что в ходе массообмена взаимодействующие потоки достигают равновесного состояния. [c.122]

    Встречное движение взаимодействующих потоков в аппарате, однако, неравноценно идеальной схеме противотока. В реальных аппаратах встречное движение потоков характеризуется неравномерными профилями скоростей по сечению, сопровождается механическим уносом легкой фазы более тяжелой фазой и, наоборот, продольным переносом тепла и массы и, следовательно, неодинаковым временем пребывания частиц обоих потоков в рабочем объеме. Отклонение от режима идеального противотока ведет к. уменьшению движущей силы процесса обмена или химического превращения и соответствующему понижению эффективности колонных аппаратов. [c.8]


    Необходимо отметить, что продольное перемешивание резко усиливается при переходе от лабораторных моделей к промышленным аппаратам, обусловливая значительное расхождение их рабочих характеристик. Как правило, лабораторные аппараты намного эффективнее промышленных (если при проектировании последних пренебрегают отклонением режима течения взаимодействующих потоков от идеального противотока). [c.8]

    В секционированных колонных аппаратах взаимодействующие потоки контактируют преимущественно путем барботажа диспергированной газовой (паровой) или жидкой фазы через слой жидкости. При осуществлении гетерогенных процессов с твердой фазой (каталитические реакции, адсорбция, ионообмен, высушивание влажных сыпучих материалов) взаимодействующий поток жидкости или газа проходит (фильтруется) через слой твердых частиц, расположенный на распределительном устройстве каждой секции. Этот слой может находиться в неподвижном или псевдоожижен-ном состоянии, в зависимости от характера и условий протекающего процесса. [c.14]

    Колонные аппараты широко распространены в химической промышленности. Они применяются в многочисленных производствах для осуществления разнообразных процессов массообмена (ректификации, экстракции, сорбции), ряда химических реакций, контактного теплообмена и обеспыливания газов. В колоннах взаимодействуют потоки веществ одинакового (жидкость — жидкость) а различного (газ — жидкость, газ —твердое вещество, жидкость — твердое вещество) агрегатных состояний в сравнительно широких диапазонах температур и давлений. [c.13]

    Известно множество конструкций колонных аппаратов, обусловленное различием характера и режима осуществляемых технологических процессов. Часто для одних и тех же процессов применяют различные аппараты. Всеобъемлющая классификация колонных аппаратов затруднительна, однако их можно классифицировать по отдельным характерным признакам. В аспекте рассматриваемой проблемы напрашивается классификация по способу контакта взаимодействующих потоков (фаз). При этом аппараты можно разделить на два относительно обширных класса. К первому принадлежат аппараты с непрерывным контактом взаимодействующих потоков на всем пути их движения. Сюда относятся несекционированные колонны насадочные (со сплошным слоем насадки), пленочные и барботажные (с одним, неразделенным, слоем жидкости или твердых частиц), распылительные. [c.13]

    Ко второму классу относятся секционированные колонные аппараты, характеризующиеся многократным прерывистым или ступенчатым (скачкообразным) межфазным контактом. Аппараты этого класса разделены по высоте на определенное число последовательно работающих секций, основаниями которых часто являются распределительные (контактные) устройства различных конструкций (тарелки). После контакта на распределительном устройстве каждой секции взаимодействующие потоки проходят через сепарационное пространство, вновь контактируют на распределительном устройстве следующей секции, и т. д. В ряде случаев [c.13]

    Секционированные колонные аппараты, предназначенные для взаимодействия потоков двух несмешивающихся или ограниченно смешивающихся жидкостей (например, в процессах жидкостной экстракции), часто снабжаются перемешивающими устройствами, работающими в зонах контактирования обеих фаз (механическими мешалками, вибрирующими перфорированными дисками, инжекторами или пульсаторами, установленными вне аппарата). [c.14]

    Конструкции колонных аппаратов хорошо описаны в ряде монографий и учебных пособий, поэтому ограничимся лишь их краткими характеристиками, существенными для постановки и решения нашей основной задачи — выяснения гидродинамической структуры взаимодействующих потоков и ее влияния на эффективность аппаратов. [c.15]

    АППАРАТЫ С НЕПРЕРЫВНЫМ КОНТАКТОМ ВЗАИМОДЕЙСТВУЮЩИХ ПОТОКОВ [c.15]

    Общей чертой всех рассмотренных аппаратов является встречное движение взаимодействующих потоков. [c.18]

    На рис. 1-4 даны схемы конструкций наиболее распространенных тарелок и соответствующих тарельчатых колонн колпачковых, ситчатых, провальных, клапанных и других. Тарельчатые колонные аппараты конструктивно несколько сложнее рассмотренных выше, но более эффективны. Они обладают большим гидравлическим сопротивлением газовому (паровому) потоку, которое становится еще больше в случае полимеризации обрабатываемых жидкостей, а также при содержании в них твердой или смолистой взвеси. Тарельчатые колонны, как и рассмотренные выше, работают в режиме встречного движения взаимодействующих потоков. [c.19]

    АППАРАТЫ С МНОГОКРАТНЫМ СТУПЕНЧАТЫМ (СКАЧКООБРАЗНЫМ) КОНТАКТОМ ВЗАИМОДЕЙСТВУЮЩИХ ПОТОКОВ [c.18]

    Таким образом, общая схема движения сводится к тому, что тяжелый поток поступает на тарелку со стороны выхода легкого потока и покидает тарелку со стороны входа последнего. Число тарелок в колонне выбирается с таким расчетом, чтобы в результате последовательного прохождения обоих взаимодействующих потоков через все тарелки был достигнут требуемый эффект тепломассообмена. [c.19]

    Стремление к созданию максимальной межфазной поверхности на каждой тарелке, высоких скоростей взаимодействующих потоков, устойчивой работы всего аппарата в случае возможных на практике колебаний нагрузки при достаточной простоте устройства, минимальной металлоемкости и невысоком гидравлическом сопротивлении обусловило появление множества конструкций тарелок. Этим главным конструктивным признаком и отличаются колонные аппараты, применяемые и предложенные для осуществления процессов ректификации и абсорбции. [c.19]


    Из колонных тарельчатых аппаратов, применяемых для ректификации и абсорбции, в технике жидкостной экстракции нашли применение лишь аппараты с ситчатыми тарелками. Специфические особенности процессов жидкостной экстракции (необходимость диспергирования одного из взаимодействующих потоков и последующего расслаивания эмульсии в каждой секции) потребовали разработки аппаратов, в которых производится принудительное диспергирование с сообщением взаимодействующим потокам внешней энергии. [c.19]

    Колонные аппараты с механическим перемешиванием взаимодействующих потоков нашли преимущественное применение для осуществления жидкостной экстракции, а в отдельных случаях — для ректификации и абсорбции. Среди этих аппаратов наибольшее распространение получили конструкции, схематически представленные на рис. 1-5 роторно-дисковые экстракторы (РДЭ), асим- [c.19]

    Приведенную классификацию колонных аппаратов по способу контакта взаимодействующих потоков нельзя считать достаточно строгой. В промышленности встречаются также аппараты, в которых указанные способы контакта используются в том или ином сочетании. Заметим, что в приведенном обзоре не ставилась цель описать все существующие конструкции колонных аппаратов и возможные принципы их классификации. Представлялось целесообразным кратко описать колонные аппараты с встречным движе- [c.21]

    Колонные аппараты, как известно, довольно сильно отличаются друг от друга траекториями движения взаимодействующих потоков. Учет продольного перемешивания в них не всегда прост и доступен. Это относится, в частности, к аппаратам с резко выраженным поперечным движением потоков в зоне распределяющих [c.22]

    Величина Бос не поддается непосредственному измерению, но может быть найдена по разности ос = п—Еал- При увеличении интенсивности перемешивания взаимодействующих потоков растет . т и падает ос- Это видно из рис. П-1, где показана типичная [c.24]

    Взаимодействующие потоки в секционированных колоннах с вращающимися мешалками характеризуются развитой турбулентностью, так что каждая секция близка к ячейке идеального перемешивания. Рециркуляционные потоки между секциями, приводящие к обратному переносу частиц по высоте колонны, вызываются неупорядоченным перемещением вихрей (турбулентных пульсаций) через отверстия в секционирующих перегородках. Объемная скорость межсекционных рециркуляционных потоков <й (м /ч) соответствует количеству вещества, переносимого всеми вихрями из одной секции в другую за единицу времени. [c.150]

    Гидродинамический режим пассивной фазы принято считать близким к идеальному вытеснению отклонения от идеальности являются, главным образом, следствием различия скоростей подъема пузырей разного размера. Более сложен вопрос о перемешивании потока в активной фазе. В плотном слое твердых частиц, при относительно малых линейных скоростях потока, турбулентные пульсации не играют заметной роли и перемешивание потока может быть следствием только взаимодействия потока с подвижными твердыми частицами. Механизм перемешивания газа в активной фазе кипящего слоя состоит в увлечении твердыми частицами молекул реагентов, находящихся у поверхности частиц и внутри пор и адсорбированных на поверхности. Если основная часть переносимого вещества адсорбирована на поверхности частиц, константа равновесия между ядром потока и приповерхностным слоем связана с удельной поверхностью частиц о и сорбционными свойствами реагентов соотношением [c.311]

    Вместо величин Qi к Qw могут быть заданы количества флегмы и дистиллята О и В или потоки пара и жидкости в области куба или дефлегматора Уо, 1, Уп, Ьп+1. Отметим, что задание О, О или Qd, Яа позволяет непосредственно определить Уя+ь -я, Уо, ь При допущении отсутствия теплового взаимодействия потоков по пару и жидкости в исчерпывающей и укрепляющей секциях определяют потоки в области куба и конденсатора. [c.76]

    Проблема синтеза теплообменной системы состоит в определении поверхности теплообмена и поиске такого способа соединения теплообменников, при котором попарное взаимодействие потоков (теплоносителей и хладоагентов) обеспечивает оптимальное значение критерия функционирования всей системы (обычно экономического). Однородность элементов системы, легкость формулирования и относительная простота задачи привлекают внимание многих исследователей к разработке алгоритмов автоматизированного синтеза технологических схем теплообмена. Однако, несмотря на кажущуюся простоту, комбинаторная природа задачи приводит к значительным трудностям вычислительного характера. Поэтому все известные методы синтеза (а их известно уже большое количество) отличаются главным образом способами снижения размерности задачи. Примечательно, что большинство алгоритмов синтеза технологических схем своим появлением обязано теплообменным системам. [c.452]

    Работа счетчиков основана на взаимодействии потока жидкости с легкой вертушкой, сидящей па оси в подшипниках,- Чем больше расход протекаюп е11 жидкости (а стало быть и скорость), тем с большим числом оборотов вращается вертушка счетчика. [c.46]

    Имеется модификация тарелок из просечно-вытяжных листов, с различным направлением просечки у отдельных секций полотна. Это обеспечивает взаимодействие потоков в контактной зоне и благоприятно сказывается на работе тарелки. За рубежом такие тарелки получили название Перформ . [c.143]

    Книга посвящена объяснению и оценке влияния тр1чстуры потоков а эффективность колонных аппаратов химической и родственных ей отраслей промышленности. Подробно рассмотрены математические модели, позволяющие описать реальное взаимодействие потоков в колонных аппаратах. Обобщены доступные экспериментальные данные для ряда колонных аппаратов. Особое внимание обращено на освещение методов расчета колонных аппаратов с учетом реальной структуры потоков. [c.4]

    Вертикальное расположение колонных аппаратов, обусловившее их название (колонны), диктуется экономией производственных площадей, простотой внутри- и межагрегатных коммуникаций, а также рациональной организацией взаимодействующих потоков в самих аппаратах (движение тяжелой фазы вниз, легкой — вверх). Значительно реже применяются горизонтальные тепло- и массообменные аппараты, особенно секционированные. Областью их преимущественного использования являются процессы высушивания и обжига (барабанные сушилки, обжиговые печи). В отдельных производствах встречаются также барабанные кристаллизаторы, абсорберы, экстракторы, ректификаторы и химические реакторы. [c.14]

    Влияние каждого из трех перечисленных факторов на интенсивность продольного перемешивания не одинаково в колоннах различных конструкций из-за своеобразного характера формирующихся в них потоков. Так, турбулентное перемешивание в осевом ваправлении и осевая циркуляция в потоке преобладают в колоннах, в которых физические или химические процессы интенсифицируются путем сообщения взаимодействующим потокам внешней механической энергии (аппараты с механическим перемешиванием), а также в барботажных колоннах. Влияние же поперечной неравномерности преимущественно проявляется в аппаратах без механических перемешивающих устройств (распылительные колонны, насадочные колонны без пульсаций и т. п.) или в аппаратах с очень низкой интенсивностью перемешивания. Поперечная неравномерность (особенно в газовом потоке) может оказывать некоторое влияние на продольное перемешивание фаз также в барботажных колоннах. [c.24]

    Диффузионная модель [12—27], в отличие от ячеечной, пред-юлагает плавное изменение составов взаимодействующих потоков 10 длине аппарата (рис. П-З). При этом каждый поток движется [c.27]

    Насадочные колонны, наполненные кольцами Рашига и Паля седлами Берля и подобными элементами, благодаря простоте устройства, большой удельной поверхности и порозности рабочего объема применяются в химической технологии для осушест-вления разнообразных тепло-, массообменных и химических (процессов. Эффективность этих аппаратов существенно зависит от равномерности распределения по сечению взаимодействующих потоков и их гидродинамической структуры. Этим обусловлено значительное число исследований, посвященных изучению продольного перемешивания потоков в рассматриваемых колоннах. [c.181]

    При взаимодействии в колонных аппаратах систем таз — жидкость и пар — жидкость кинетической энергии потоков достаточно для интенсивного их диспергирования и перемешивания, что обусловлено большой разностью плотностей фаз. Эти условия отсутствуют в колоннах для взаимодействия систем жидкость-жидкость, где разность плотностей обеих фаз мала, поэтому для интенсификации таких процессов прибегают к сообщению взаимодействующим потокам дшолвительной энерпии, в-частности в виде колебаний (пульсаций). В таких пульсационных колоннах соударение жидкостей с насадкой способствует их диспергированию и интенсивному перемешиванию. [c.181]

    Факторами, определяющими рабочие характеристики аппаратов данной конструкции, являются гидродинамическая обстановка, физические овойства взаимодействующих потоков и их удельные расходы, а в ряде 1случаев — удельное количество подведенной извне энергии (на перемещивание, вибрацию, пульсацию и т. п.). Надеж-иость прогнозирования свойств промышленного аппарата по результатам исследований лабораторной модели зависит (В о сновном от степени приближения гидродинамической обстановки и физиче-ски свойств рабочих систем для модели и промышленного аппарата. [c.253]

    Использование графика позволяет также располагать н разбрызгивающие форсунки по равномерной сетке так, чтобы избежать возникновения несмоченных зон. Это важно не только при орошении пасадки, ио и при смачивании сыпучих п барабанах грануляторов [80], тушении горячего кокса водой в вагонах его выгрузки из печи [32, 104], при промывке полотна фильтров [92], размещении противопожарных спринклеров [41], при так называемом короткоструйном дождевании [20] и в других случаях, в том числе н при расчете решеток, пред-иазиаченных для псевдоожнжения слоя факелами газа [15, 54]. Во всех этих случаях, используя величины е и 1], можно лимитировать в нужном соотношении степепь перекрытия взаимодействующих потоков. [c.57]

    Алгоритм расчета ректификации с химической реакцией. Процессы получения новых веществ (реакторные процессы) и выделения продуктов заданного качества являются основными в химической промышленности. Продукты реакции, попадая в ректификационную колонну, подвергаются воздействию высоких температур и давлений с интенсивным взаимодействием потоков пара и жидкости. Если учесть, что в смеси присутствуют или вновь появляются вещества, способствующие протеканию побочных реакций, что приводит к загрязнению целевых продуктов, то становится очевидной необходимость учета возможности появления дополнительных относительно исходного питания компонентов и организации соответствующим образом процесса. Последнее особенно важно при получении продуктов высокой чистоты. Протекание химических реакций одновременно с ректификацией не является чем-то исключительным в повседневной практике эксплуатации промышленных процессов. Это полимеризация, выделение смолистых осадков, появление неидентифи-цируемых примесей в продуктах разделения и появление ряда других внешних признаков наличия химической реакции. Знание условий протекания таких реакций позволяет заранее принять соответствующие меры, предохраняющие целевые продукты и аппаратуру от загрязнения. [c.364]


Смотреть страницы где упоминается термин Взаимодействующие потоки: [c.79]    [c.85]    [c.9]    [c.22]    [c.206]    [c.206]    [c.252]    [c.456]   
Смотреть главы в:

Введение в биофизическую химию -> Взаимодействующие потоки




ПОИСК





Смотрите так же термины и статьи:

Аппараты с многократным ступенчатым (скачкообразным) контактом взаимодействующих потоков

Аппараты с непрерывным контактом взаимодействующих потоков

Взаимодействие возмущения из набегающего потока с пограничным слоем вблизи передней кромки пластины

Взаимодействие однородных сверхзвуковых потоков

Взаимодействие потока газа с упругой оболочкой трубы

Взаимодействие потока с донными русловыми формами

Взаимодействие потока с ограничивающими его стенками

Взаимодействие потока с твердыми стенками и телами

Взаимодействие сверхзвукового потока с облаком частиц. Моделирование подъема и воспламенения частиц угольных отложений

Взаимодействие сверхзвукового потока с облаком частиц. Моделирование подъема слоя пыли с поверхности в континуальном режиме

Взаимодействие сверхзвукового потока с облаком частиц. Моделирование подъема слоя пыли с поверхности в континуальном режиме. Верификация модели

Взаимодействие сверхзвукового потока с облаком частиц. Учет силы аэродинамической интерференции

Взаимодействие частицы аэрозоля в потоке с другими телами

Влияние деформации капель и их диффузионного взаимодействия на массообмен с потоком при больших числах Пекле

Зависимость достижимых параметров от температур взаимодействующих потоков

Зависимость достижимых параметров от температур и критических скоростей взаимодействующих потоков

Задача о взаимодействии двух сверхзвуковых потоков

Интерференция взаимодействия потоков

Ионообменные взаимодействия в потоке подземных вод

К расчету продолжительности взаимодействия фаз в распылительных скрубберах с нисходящим движением контактируемых потоков

Кииетика изотопных потоков механизмы изотопного взаимодействия

Массопередача при различных условиях взаимодействия фаз и гидродинамических структурах потоков

Некоторые вопросы тепло-, массообмена и кинетики химических реакций при взаимодействии химически активных систем с потоками плазмы

Неоднородная деформация клубка и изменение гидродинамического взаимодействия в потоке

О продолжительности контакта взаимодействующих фаз в распылительных скрубберах с противоточным движением потоков

Общие сведения о структуре двухфазного потока пневмовзвеси и взаимодействии фаз

Основные понятия. Взаимодействие потока и русла

П л и т. О продолжительности контакта взаимодействующих фаз в орошаемой трубе Вентури с горизонтальным движением потоков

Расчет массообменных колонн со встречными потоками взаимодействующих фаз при линейной связи равновесных концентраций

Расчеты технологических процессов в колонных аппаратах с учетом структуры взаимодействующих потоков

Режимы взаимодействия зернистого слоя с потоком

Силы взаимодействия потока с твердым телом

Скорость реакции в потоке реагирующего газа. Взаимодействие химических реакций

Составление дифференциальных уравнений Процесс взаимодействия двух потоков

Схемы перемещения взаимодействующих потоков

Усилия от взаимодействия в потоке частиц разных классов крупности

Усилия от взаимодействия в потоке частиц со стенками аппарата

Характер взаимодействия струй основного потока и противотока



© 2025 chem21.info Реклама на сайте