Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники собственные

Рис. 4.17. Схема, характеризующая механизм собственной проводимости полупроводника Рис. 4.17. Схема, характеризующая механизм <a href="/info/19597">собственной проводимости</a> полупроводника

    Электрические и оптические свойства. Наиболее важной нз электрических характеристик элементарных веществ является электрическая проводимость, с которой, собственно, в значительной мере связана классификация элементарных веществ. Так, элементарные металлы являются проводниками электричества первого рода, металлоиды—полупроводниками, элементарные окислители — диэлектриками, благородные газы — скользящими проводниками электричества. [c.115]

    ЧИСЛО возможных уровней в зоне ровно в два раза больше, чем число электронов, вследствие чего она является зоной проводимости. Этим объясняется также высокая электрическая проводимость этих металлов. Существует несколько основных типов взаимного расположения энергетических зон (рис. А.62), соответствующих изолятору, одновалентному металлу, двухвалентному металлу, полупроводнику с собственной проводимостью, примесному полупроводнику и-типа и примесному полупроводнику р-типа. Соотношение энергетических зон (рис. А.62) определяет также тип проводимости твердого тела. [c.142]

    Катализ первого класса, сокращенно называемый электронным катализом , осуществляется на твердых телах — проводниках электрического тока (металлах и полупроводниках). Эти тела обладают рядом общих физико-химических свойств, связанных с наличием в них подвижных электронов. Для тел-проводников характерна электропроводность, окраска (т. е. заметное поглощение света в видимой области спектра), термоэлектронная эмиссия и внешний фотоэффект. К этому классу относятся каталитические реакции окисления, восстановления, гидрирования, дегидрирования, объединяемые в тип гемолитических. Все они сопровождаются разделением электронов в электронных парах молекул. Общий механизм действия катализатора сводится при этом к облегчению электронных переходов в реагирующих молекулах за счет собственных электронов катализатора. [c.13]

    Как вытекает из теории твердого тела, уровень Ферми ер в объеме полупроводника всегда расположен в пределах запрещенной зоны, причем для собственных полупроводников (без примесей доноров или [c.292]

Рис. 68. Зонная схема собственной проводимости полупроводника Рис. 68. <a href="/info/707709">Зонная схема</a> <a href="/info/19597">собственной проводимости</a> полупроводника

    Примесные полупроводники п-типа (рис. А.62,5). При внесении в собственный полупроводник посторонних атомов, способных быть донорами электронов, возникающие примесные энергетические термы находятся вблизи зоны проводимости L. Переход электронов в зону проводимости L требует лишь незначительных затрат энергии. [c.142]

    Введем несколько определений. Проводимость химически чистых полупроводников называется собственной проводимостью, а сами полупроводники — собственными полупроводниками. Как мы видели, для них п = р = п,-. Проводимость полупроводников, содержащих примесь, называется несобственной. Если в полупроводнике концентрация свободных электронов, создаваемая донорными примесями, преобладает над концентрацией дырок, т. е. п > р, то его называют электронным полупроводником, или полупроводником я-типа если р п (преимущество акцептора), то полупроводник будет р-типа. В полупроводнике л-типа свободные электроны называются основными носителями тока, а дырки — неосновными носителями в полупроводнике р-типа — наоборот. [c.245]

    Расчет концентрации свободных носителей в полупроводнике является важнейшей составной частью статистики электронов. От концентрации носителей зависят важнейшие свойства полупроводников. Собственная проводимость объясняется перебросом части электронов из заполненной зоны в зону проводимости с затратой энергии, равной ширине запрещенной зоны. При этом число электронов в зоне проводимости точно равно числу дырок в валентной зоне. Обозначим энергию электрона на дне зоны проводимости Е , а на верхней границе валентной зоны — 1. Чтобы рассчитать концентрацию электронов в зоне проводимости и число дырок в заполненной зоне, предварительно определяют число электронных состояний между и + с1Е. Для этого в пространстве импульсов выделяется поверхность, отвечающая всем состояниям с заданной энергией Е. Это будет поверхность шара с радиусом р (рис. 9), который определяется отношением (1.7), откуда [c.26]

    Согласно зонной теории полупроводников в полупроводнике имеется два рода носителей тока электроны в зоне проводимости и дырки в валентной зоне. В чистом (собственном) полупроводнике, например в чистом германии или кремнии, число электронов Па в зоне проводимости равно числу дырок ро в валентной зоне  [c.139]

    Наиболее наглядно проявляется триада в производстве полупроводниковых материалов. Вот пример. Основная трудность при очистке германия — удаление мышьяка, а при очистке кремния — удаление бора. Парадоксально на первый взгляд выглядит тот факт, чго затрачивается уйма средств и сил для удаления этих элементов вплоть до возникновения у полупроводников собственной проводимости. А затем эти же самые примесные элементы вносят в полупроводники на последующих стадиях производства мышьяк в качестве донора, а бор — в качестве акцептора электронов. Но ведь дело в том, что примеси вносят в очень малых и точных дозах, варьирующих в пределах 10 —10 %. К тому же примеси должны быть внесены таким образом, чтобы они распределились в очень тонких слоях полупроводника и в ограниченных, строго оконтуренных участках. [c.35]

    На диаграмме и соответственно означают энергию электрона на дне зоны проводимости и потолке валентной зоны. Пунктирная линия Еу—уровень Ферми,, который характеризует относительные концентрации дырок и электронов. В полупроводниках собственной проводимости уровень Ферми , проходит по середине запрещенной зоны. Положение уровня Ферми Ф относительно определяется уравнением [c.9]

    Механизм собственно отравления, очевидно, связан с типом катализа и различается для процессов электронного катализа на полупроводниках и металлах и процессов ионного катализа. Рассмотрим сначала последний случай, как более простой. [c.53]

    Шокли в качестве иллюстрации предложил рассматривать двухэтажный гараж. Пусть нижний этаж целиком заполнен автомобилями, а верхний совершенно свободен. В этом случае автомобили не обладают подвижностью в обоих этажах. Пусть один автомобиль перейдет из нижнего в верхний этаж. Возникнет возможность перемещения автомобиля на обоих этажах. При этом движение автомобилей на нижнем этаже рационально описывать как движение дырки (места, где нет автомобиля), хотя двигаются, конечно, автомобили. Движение дырки будет фиксироваться в эффекте Холла как движение положительного заряда. Действительно, устойчивых положительных частиц с массой электрона не существует. Таким образом, у полупроводников с собственной проводимостью имеется как обычная (электронная), так и дырочная проводимость. Вышеизложенное объясняет возрастание проводимости полупроводников с повышением температуры. С ростом температуры увеличивается число электронов, перешедших в верхнюю зону, что и приводит к увеличению электропроводности. [c.517]

    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р--=К 1п. Поэтому проводимость таких примесных полупроводников п-типа осуществляется в основном за счет свободных электронов в зоне проводимости. Если же атомы примеси резко увеличивают число дырок в валентной зоне, то растет дырочная проводимость и соответственно уменьшается число свободных электронов п = Кз/р- Такого рода примеси называются акцепторами электронов, а полупроводники с дырочной проводимостью — полупроводниками /7-типа. Акцепторами электрона для германия служат атомы галлия. В присутствии примесей соотношение (28.2) в объеме полупроводника уже не остается справедливым. Вместо него следует записать [c.141]


    Полупроводник с собственной проводимостью (рис. А.62, г). Разность энергии (Еа) между заполненной валентной зоной G и зоной проводимости L настолько мала, что становится сопоставимой с уровнями тепловой энергии. Отсюда [c.142]

    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р = Поэтому [c.150]

    Следует различать полупроводники, обладающие собственной проводимостью, и так называемые примесные. [c.516]

    Если к полупроводнику приложить невысокую разность потенциалов, то это вызовет движение электронов в зоне проводимости (дырочная проводимость п-типа) и одновременное перемещение дырок (дырочная проводимость р-типа). Движение дырки происходит по следующему механизму электрон, находящийся рядом с дыркой, занимает ее положение, при этом на его месте снова возникает положительно заряженная дырка. Соседний электрон осуществляет подобный переход и т. д. Таким образом, в валентной зоне дырки будут перемещаться в сторону отрицательного электрода, а в зоне проводимости электроны будут двигаться в сторону положительного электрода (рис. 4.17). Проводимость такого типа называется собственной. [c.185]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    При высоких температурах это соотношение выполняется, при низких большую роль по сравнению с собственной играет так называемая примесная электропроводность. Атом примеси может отдавать свой электрон (быть донором). Если энергетический уровень электрона примеси окажется вблизи от верхней зоны, то электрон может от примеси перейти в верхнюю зону и превратиться в электрон проводимости. Такие полупроводники называются полупроводниками /г-типа, или электронными. [c.518]

    Энергия возбуждения электрона примеси может оказаться меньше Q, поэтому при низких температурах примесная проводимость больше собственной. Если атом примеси может принять электрон (атом—акцептор) и уровень этого электрона лежит вблизи потолка нижней зоны, то электрон из заполненной зоны может перейти к примеси. В результате в нижней зоне образуется дырка и возникает полупроводник"р-типа. [c.518]

    В кристаллической решетке полупроводников с собственной проводимостью число электронов равно числу дырок (п = р). Типичными полупроводниками среди простых веществ являются кремний, германий, селен, теллур. Некоторые другие простые вещества в кристаллическом состоянии также проявляют полупровод- [c.186]

    Если кристалл полупроводника не содержит каких-либо примесей, то количество образовавшихся дырок равно количеству освободившихся электронов. Проводимость, возникшая в этих условиях, называется собственной проводимостью полупроводника. [c.95]

    Если же ширина запрещенной зоны относительно невелика, то при сообщении твердому телу определенного количества энергии часть его электронов может переброситься из полностью заполненной валентной зоны в зону проводимости и принять участие в переносе тока. Подобные вещества называют собственными полупроводниками. Так, у типичных собственных полупроводников германия и кремния ширина запрещенной зоны при ОК соответственно составляет 0,75 и 1,21 эВ (73 и 137 кДж/моль). [c.85]

    Особенность собственных полупроводников состоит в том, что при переходе части электронов в зону проводимости в валентной зоне [c.85]

    Истинные полупроводники (собственная полупроводимость) СиО, С03О4, rgOg. Концентрация электронных дырок равна концентрации междоузель-ных электронов Ла + к 0 Электропроводимость не зависит от окислительной способности атмосферы. [c.39]

    В некоторых случаях концентрации электронных дефектов в нестехиометрических кристаллах описываются формулами физики полупроводников — собственных или примесных (реше- [c.165]

    Однако Боненкамп и Энгел под потенциалом германиевого электрода п- и р-типа понимают потенциал поверхности полупроводника по отношению к его объему,, а не обычный электрохимический потенциал. Поэтому, в действительности, нулевая точка германия п-типа должна находиться в более отрицательной, а р-типа — в более положительной области по отношению к полупроводнику собственной проводимости. [c.15]

    В согласии с уравнением (4.9) для электропроводности Кщ собственно полупроводника можно наплсать [c.137]

    Если в собственно полупроводник ввести акцепторную примесь, например в германий ввести атом галлия, у которого лищь три валентных электрона, то к нему от германия перейдет один из электронов, и в валентной зоне появится дырка. Условием такого перехода является близость энергетического уровня примеси, располагающегося в запрещенной для германия зоне, к верхнему уровню валентной зоны германия. Концентрация дырок в этом случае становится преобладающей, и собственно полупроводник превращается в примесный полупроводиик р-тла, или в р-полупроводник. Для полупроводников с примесной проводимостью пфрфп[ и вместо (5.46) следует писать [c.139]

    В случае примесных полупроводников, пока содержание примесных атомов невелико, остаются в силе основные соотношения, полученные для собственно полупроводников. С ростом содержания примесей поведение системы полупроводник— раствор уже не может быть описано приведенными уравнениями и зависит от природы примесных атомов. Так, в пределе для примесного л-полупр6 -водника, особенно ири высокой плотности поверхностных состояний, электрические свойства границы его с раствором приолнжаются к свойствам системы металл — раствор. [c.275]

    Однако реальные полупроводники всегда имеют примеси, которые существенно влияют на характер электрической проводимости, в этом случае называемой примесной. Примеси бывают донорные и акцепторные. Донорные примеси имеют на валентной электронной оболочке большее число электронов, чем их число на валентной электронной оболочке атома основного элемента полупроводника. Например, примеси атомов элементов V или VI главных подгрупп периодической системы в кристаллической решетке кремния (IV главная подгруппа) будут донорными. В зонной структуре полупроводника появляются дополнительные электроны проводимости. Если атом примеси содержит меньше валентных электронов, чем атом основного элемента, то полупроводник содержит в валентной зоне дополнительные свободные МО, на которые могут переходить валентные электроны. Такие примеси называются акцепторными, они приводят к появлению дополнительных дырок проводимости. По отношению к кремнию такими примесями будут элементы III главной подгруппы. Полупроводники с преобладающим содержанием донорных примесей называются полупроводниками с электронной проводимостью или п-типа. Если же преобладают примеси акцепторные, то полупроводники называются полупроводниками с дырочной проводимостью или р-типа. Для получения примесных полупроводников полупроводники, полученные специальными кристаллофизическими методами в сверхчистом состоянии, легируются элементами акцепторами или донорами электронов в микродозах, не превышающих 10 %. Примеси резко изменяют собственную электрическую проводимость полупроводников, поскольку количество носителей заряда, поставляемых ими обычно больше, чем их число в чистом полу-прово,цнике. Так, чистый кремний имеет удельное электрическое сопротивление электронной проводимости около 150-10 Ом-м, дырочной проводимости в.4 раза, электронной проводимости после легирования фосфором и дырочной проводимости после легирования бором — в 20 раз меньше. [c.636]

    Наряду с собственными большое распространение получили также полупроводники примесного типа. В них основное количество переносчиков тока — электронов или дырок— поставляют введенные в собственный полупроводник специальные примеси, энергетические уровни которых располагаются между валентными зонами и зонами проводимости полупроводника. Так, при введении в кристалл германия так называемых донорных примесей, как, например, фосфора, мышьяка, сурьмы, электроны последних переходят в зону проводимости полупроводника, резко увеличивая в ней число электронов — переносчиков тока (л-проводимость). При добавлении к германию акцепторных примесей типа бора, алюминия, ипдия электроны валентной зоны полупроводника переходят на свободные уровни зоны примесей, что увеличивает число дырок (р-проводимость) в валентной зоне. [c.86]


Смотреть страницы где упоминается термин Полупроводники собственные: [c.15]    [c.97]    [c.137]    [c.137]    [c.137]    [c.275]    [c.36]    [c.122]    [c.141]    [c.139]    [c.86]   
Общая химия (1984) -- [ c.213 ]

Физическая химия (1978) -- [ c.590 , c.592 ]

Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.62 , c.63 ]

Новые проблемы современной электрохимии (1962) -- [ c.380 , c.384 ]

Новые проблемы современной электрохимии (1962) -- [ c.380 , c.384 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.10 , c.524 , c.528 ]

Строение материи и химическая связь (1974) -- [ c.173 ]

Общая химия Изд2 (2000) -- [ c.109 ]

Курс общей химии (0) -- [ c.76 ]

Курс общей химии (0) -- [ c.76 ]

Предмет химии (0) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ на полупроводниках в области собственной проводимости.— О. В. Крылов, С. 3. Рогинский и Е. А. Фокина

Полупроводники

Полупроводники полупроводники

Полупроводники собственная проводимость

Собственно-дефектные полупроводники

Собственные

Собственные и примесные полупроводники



© 2024 chem21.info Реклама на сайте