Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний очистка

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]


    Если имеется установка для извлечения четыреххлористого кремния, очистка отходящих газов проводится после этой стадии. [c.525]

    Кроме того, накапливаются различные сыпучие отходы, отработанные адсорбенты и катализаторы, заводской мусор, жидкие и твердые отходы, затаренные в бочки. Шлам образуется также при нейтрализации химически загрязненных сточных вод (например, производства синтетических жирных кислот) известковым молоком, аммиаком перед биохимической очисткой. Кальциевый шлам станций нейтрализации содержит 50—55% органических соединений (кальциевые соли различных жирных кислот, спирты, сложные эфиры, углеводороды) и 45—50% минеральных веществ (диоксид кремния, гидроксид кальция и др.). [c.124]

    Окончательная очистка полупроводникового кремния происходит при вытягивании монокристаллов Si из его расплава. [c.368]

    Очистка кремния методом зонной плавки достигается медленным (не более 2 мм/мин) передвижением узкой расплавленной зоны (или нескольких таких зон) по всей длине образца твердого материала, вследствие чего за ней перемещаются примеси, и это позволяет получить особо чистые монокристаллы кремния. С no-s-мощью зонной плавки можно получить однородный твердый раствор кремния в германии. [c.8]

    Выход кремния повышается, если магний и двуокись кремния берут в теоретически необходимом количестве. После очистки продукта реакции соляной кислотой он содержит небольшое количество магния и двуокиси кремния. Очистка в плавиковой и серной кислотах дает чистый продукт. [c.223]

    Содержание примесей определяется чистотой исходных полимеров, температурой получения СУ и, как правило, не превышает 0,02%. В их состав входят в порядке уменьшения количества железо, ванадий, кальций, кремний, алюминий, марганец, магний. Возможна специальная очистка СУ. [c.496]

    В связи с проблемой получения веществ особой чистоты химические методы стали применяться и для глубокой очистки веществ. Например, обработка кремния минеральными кислотами позволяет перевести значительную часть содержащихся в поверхностном слое кремния соединений металлов в растворимые соли, которые затем можно отмыть. Таким образом можно достичь значительного снижения содержания металлов в кремнии. При этом, разумеется, используемые реагенты сами должны иметь высокую степень чистоты во избежание возможного загрязнения очищаемого вещества. [c.11]

    В целом зонная перекристаллизация является очень эффективным методом глубокой очистки веществ. Она позволяет произвести очистку веществ до содержания в них отдельных лимитирующих примесей на уровне 10 —10 мае. % и ниже. Именно с применением этого метода в настоящее время получают наиболее чистые вещества, такие, как германий, кремний, олово, алюминий и др. Важнейшей областью использования зонной перекристаллизации является также производство монокристаллов, в том числе с заданным распределением легирующих добавок. [c.128]


    Соотношение (111.59) позволяет охарактеризовать распределение примеси по высоте колонны с учетом изменения среднего размера кристаллов твердой фазы. Для этого необходимо знать зависимость W от z. Опыты по очистке ряда веществ (бензол, стильбен, сера, аммиак, трихлорид мышьяка, тетрахлорид кремния) показали, что эта зависимость хорошо описывается выражением [c.141]

    Как известно, кристаллизация из расплава используется для очистки многих веществ, в том числе и таких тугоплавких, как кремний, германий, различных металлов и солей. Однако высокая температура процесса увеличивает вероятность взаимодействия очищаемого вещества с материалом разделительной аппаратуры, что приводит к загрязнению этого вещества. Например, в процессах зонной очистки и выращивании монокристаллов германия он долго находится в расплавленном состоянии при температуре 1000°С в контакте с контейнером (лодочкой). Хотя контейнер обычно изготавливают из графита высокой чистоты, тем не менее оказывается, что в ходе процесса имеет место переход некоторых примесей, содержащихся в графите, в германий. Следовательно, задача подбора подходящих конструкционных материалов в подобных случаях приобретает важное значение. С целью выработки рекомендаций по повышению их качества или замены представляет интерес оценка загрязняющего действия этих материалов. Рассмотрим кратко некоторые оценки загрязнения очищаемого вещества примесью, одноименной с отделяемой. [c.144]

    Для использования в качестве полупроводника получаемый такими методами кремний подвергают еще дополнительной очистке при помощи зонной плавки. [c.93]

    В кварцевую трубку, расположенную горизонтально, насыпают немного оксида алюминия, на который помещают алюминиевую проволоку диаметром 3—4 мм н длиной 20 см. Работу по очистке проводят в аппарате (рис. 24) при температуре около 700—750°С. Скорость движения расплавленной зоны около 1,5 мм/мнн. Содержание таких примесей, как железо, медь, кремний, несколько уменьшается. На практике (в промышленности) расплавленную зону проводят около 10 раз в вакууме. [c.172]

    При работе с чистыми исходными вепдествами и после многократной очистки продукта реакции кислотами получают кремний, содержащий всего около 0,1% примесей. [c.180]

    Очистка кремния транспортными реакциями [c.181]

    Скорость удаления примесей лимитируется скоростью их диффузии в очищенные поверхностные слои. Прокаливание проводят в течение 2—2,5 ч. Более эффективная очистка проходит, если в холодный конец трубки поместить открытую ампулу или лодочку с хлоридом кремния (IV). [c.181]

    Полученное вещество содержит некоторое количество растворенного хлора, его отделяют перегонкой тетрахлорида через раскаленную трубку с кремнием, которую помещают между перегонной колбой и холодильником. При этом образуется некоторое количество полихлоридов. Более простой метод очистки продукта от хлора — настаивание тетрахлорида со ртутью, образовавшуюся при этом каломель и избыток рт тн отделяют фильтрованием, а фильтрат для окончательной очистки перегоняют. Для получения значительных количеств хлорида кремния (IV) используют установку (рнс. 7). [c.183]

    Реальная поверхность кре.мния содержит весьма тонкий слой оксида кремния (1,0—1,5 нм), который образуется в ходе технологических процессов полировки монокристалла и очистки его поверхности от примесей при химическом удалении поверхностного слоя, нарушенного механической обработкой и окончательной промывкой монокристалла в растворителях и воде. При этом поверхностные атомы кремния оксидной пленки могут быть связаны с гидроксильными группами, кроме того, на поверхности физически адсорбируются молекулы воды. Аналогичная картина имеет место и на поверхности кристаллического оксида кремния— кварца. Исходя из этого химическая гомогенизация поверхности указанных материалов должна включать, с одной стороны, удаление физически сорбированной воды, а с другой — достижение максимальной степени гидроксилирования поверхности. Последнее оказывается одним из важнейших условии при использовании поверхности твердых веществ в качестве матрицы для осуществления на ней направленного синтеза, например, оксидных структур методом молекулярного наслаивания. Предельная степень гидроксилирования обусловливает максимальное заполнение поверхности элемент-кислородными структурными единицами, и, таким образом, вопрос стандартизации гидроксильного покрова поверхности при подготовке к синтезу является одним из важнейших, определяющим сплошность синтезированного методом молекулярного наслаивания слоя. [c.78]

    Не менее ответственной операцией после реагентной обработки является отделение примесей от основного материала. На этой стадии эффективность процесса очистки во многом будет зависеть как от полноты разделения компонентов, так и от степени их вторичного загрязнения материалом аппаратуры. Вторичное загрязнение заметно при больших поверхностях соприкосновения, например в процессах фильтрации или газоулавливания, а также при повышенных температурах процессов. Так, пропускание паров серы через кварцевый реактор, нагретый до 800°С, приводит к повышению содержания кремния от 0,005 до 0,1 %. Вероятность вторичного загрязнения следует учитывать не только в процессе очистки, но и при выборе условий хранения и использования очищенного вещества. Вторичное загрязнение продукта можно снизить, используя для изготовления аппаратуры химически стойкие материалы, такие, как фторопласты, нитриды бора, кремния и др. [c.315]


    К чистоте угольных и графитовых электродов предъявляются очень высокие требования, поэтому обычный графит не пригоден — в нем содержится много примесей. Промышленность выпускает для спектрального анализа несколько марок графитовых электродов специальной очистки. Эти электроды свободны от большинства примесей. В них могут присутствовать только небольшие количества бора, кальция, магния, титана, кремния, алюминия и некоторых других элементов. [c.248]

    Если имеется установка для извлечения тетрахлорида кремния, очистка отходящих газов проводится после нее. В камере очистки отходящих газов с помощью быстро вращающихся мешалок создается туман мельчайших капелек воды, что обеспечивает хороший контакт газа с водой и очистку его от Si U, Ti U, H l и мелких частиц AI I3. Для удаления из отходящих газов хлора в камеру подают также сернистый ангидрид, который восстанавливает хлор до хлористого водорода [c.169]

    Разделение дисперсных систем под действием силы земного пррггяжения называют отстаиванием. Если дисперсная фаза (взвешенные частицы или капли жидкости) имеет плотность выше, чем дисперсионная (сплошная) фаза, то она движется вниз и, достигнув ограничительной поверхности, образует слой осадка или тяжелой жидкости и наоборот, если плотность дисперсной фазы меньше, то частицы всплывают. После разделения фаз они могут быть выведены из аппарата раздельно. Процесс отстаивания широко применяется в нефтегазопереработке и нефтехимии для обезвоживания и обессоливания нефти, отделения дистиллятов от воды после перегонки с водяным паром, очистки нефтяных топлив от загрязнений (вода, частицы катализатора, продукты коррозии, соединения кремния, кальция, алюминия), отделения газа от жидкости в газосепараторах, очистки сточных вод от загрязнений (нефть, нефтепродукты, нефтесодержащий шлам, избыточный активный ил, твердые механические примеси) и т.п. Важным показателем процесса отстаивания является скорость осаждения частиц под действием силы тяжести. [c.360]

    При получении ферросплавов в открытых электродуговых рудо-восстановительпых печах образуются нестойкие летучие недоокиси, которые уносятся с отходящими реакционными газами. В дальнейшем они смешиваются с подсасываемым атмосферным воздухом, окисляются и переходят в аморфное состояние. Образовавшаяся пыль состоит из мелких частиц, обладающих высоким удельным электрическим сопротивлением (1-10 —1-10 Ом-м), обусловленным высоким содержанием в них окислов кремния. Очистка газов от этой пыли затруднительна. [c.191]

    Полученный по этому способу кремний содержит 2—5% примесей. Необходимый для изготовления полупроводниковых приборов кремний высокой чистоты получают более сложным путем. Природный кремнезем переводят в такое соединение кремния, которое поддается глубокой очистке. Затем кремний выделяют из полученного чистого вещества термическим разложением илн действием восстановителя. Один из таких методов состоит в превращении кремнезема в хлорид кремния Si I4, очистке этого продукта и носстаповлении нз него кремния высокочистым цинком. Весьма чистый кремний можно получить также термическим разложением иодида кремния SII4 или силана SiH . Получающийся кремний содержит весьма мало примесей и пригоден для изготовления некоторых полупроводниковых приборов. Для получения еще более чистого продукта его подвергают дополнительной очистке, например, зонной плавке (см. 193). [c.508]

    В составе силикат-глыбы и готового катализатора и адсорбента содержится свыше 70% окиси кремния. Пыль, образующаяся в сырьевом отделении при разгрузке, хранении и размоле силикат-глыбы, в сушильно-прокалочном отделении и на складе готовой продукцпи, представляет собой большую опасность для организма, чем всякая другая пыль, например коксовая, гумбриновая или сульфатная. Применение устройств по герметизации аппаратуры и осуществление механизации процессов является одним из основных мероприятий по технике безопасности и охране труда в производстве алюмосиликатных катализаторов, адсорбентов и силикагелей. Мероприятия по борьбе с пылевыделением на разных участках технологического процесса производства катализаторов и адсорбентов в основном сводятся к следующему. Перед разгрузкой вагонов или платформ с силикат-глыбой последнюю обрызгивают водой из резинового шланга с лейкой на конце. Увлажняют силикат-глыбу и на площадке дробилки перед началом дробления. Увлажнение силикат-глыбы почти полностью ликвидирует основные очаги выделения силикатной пыли. В настоящее время на ряде катализаторных фабрпк очистку катализаторной крошки и пыли из-под конвейерных лент проводят методом вытяжной венти.пяции, который позволяет проводить уборку одному рабочему быстро и не вдыхая пыли. При транспортировании вертикальными и наклонными элеваторами образующуюся силикатную пыль отсасывают вентилятором действующего дымососа. В прокалочном отделении крошку и мелочь собирают в специальный монжус, из которого содержимое сплошным потоком транспортируется сжатым воздухом в бункер аэробильной мельницы. [c.163]

    Литий реагирует с водородом при температуре выше 440 °С с образованием гидрида при 600—630°С реакция протекает очень бурно. Поскольку литий и гидрид лития выщелачивают кремний из стекла и фарфора, а пары гидрида при температуре синтеза создают значительное давление, при проведении реакции следует соблюдать особые меры предосторожности. Лучше всего синтез проводить в фарфоровой трубке, облицованной внутри на протяжении всей обогреваемой зоньг листовым никелем. Литий гидрируют в лодочке из листового железа, полученного электролизом. Для полной очистки железных и никелевых частей установки от оксидов ее вместе с лодочкой нагревают до 800 °С в потоке чистого сухого водорода (водород, полученный электролизом, пропускают над паллади-рованным асбестом при 300 °С, СаСЬ и Р4О10). После охлаждения литий очищают парафиновым маслом, промывают безвод-ньш эфиром, помещают в железную лодочку, поверхность которой полностью очищена от оксидов, и во влажном состоянии как можно быстрее вносят в установку. Вакуумируют, нагревают до 200°С для удаления остатка растворителя, пропускают через установку поток водорода и продолжают нагревание. При 440 °С начинается поглощение водорода, которое энергично протекает при 600—630°С. В этот момент устанав- [c.602]

    Предварительная очистка морской воды, как показали длительные испытания опытно-промышленной обратноосмотической опреснительной установки [193], сложнее, чем предочистка солоноватых вод, несмотря на то, что при опреснении морской воды обычно нет необходимости в очистке ее от солей жесткости (так как по экономическим соображениям степень извлечения пресной воды из морской невелика — примерно 30—40% и, следовательно, концентрирование солей в исходной воде мало). Сложность очистки морской воды связана с высоким содержанием в ней органических веществ (водоросли, ил, микроорганизмы и т. п.) и коллоидов кремния, которые обычной фильтрацией практически не удаляются. Для максималыюго их удаления перед песчаным фильтром морскую воду следует обрабатывать коагулянтом. [c.297]

    Указанные выше катализаторы позволяют восстанавливать образую-и йся в процессе окисления сероводорода тиосульфат, что существенно повышает общий выход серы. Окисление растворов сероводорода рекомендуется проводить следующим образом в раствор, содержащий Н,5 и тиосульфат, вводится фталоцианиновый катализатор ТСФК в концентрации 10 М и раствор катализатора ИК-27-1 до концентрации 10 М по кремнию. Смесь выдерживается до начала окисления 3...6 мин., а затем контактируется с воздухом до полного окисления Н,5. Применение бифункциональных катализаторов позволяет получать при окислении растворов, содержащих Н,5 и Зрз серу с выходом, близким к 100%, что может быть использовано как для очистки газовых выбросов, так и для очистки растворов от Н,5. [c.200]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Изучение влияния содержания окиси кремния на свойства промышленных алюмокобальтмолибденовых и алюмоникельмолибдено-вых катализаторов показало, что введение 3102 увеличивает объем и средний радиус пор, повышает в 1,5 раза механическую прочность катализатора. При этом возрастают расщепляюш,ая и изомеризующая активности катализаторов У Большое значение в настоящее время уделяется катализаторам на цеолитной основе. Эти катализаторы обладают высокой активностью и хорошей избирательностью, а кроме того позволяют часто проводить процесс без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2% азота практически не влияет на их активность Применение цеолитных катализаторов часто позволяет проводить процесс при более низкой температуре Повышенная активность катализаторов на основе цеолитов объясняется более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными катализаторами [c.322]

    Взаимодействие кремнефтористоводородной кислоты с хлористым натрием или сульфатом натрия прп утилизации фтора и суперфосфатном производстве и при очистке фосфорной и плавиковой кислот от кремне-фтористоводород-иой кислоты [c.229]

    Пря адсорбционной очистке нефтяных ффакци используется, способность некоторых естественных глин, алюмосиликатов, силикагеля, цеолитов и других Ееи1вств избирательно адсорбировать на своей поверхности различные компоненты. Адсорбенты являются полярными, и их молекулы состоят в основном из оксидов кремния и алюминия. В их состав могут входить оксиды и других металлов. [c.74]

    Недостаточная чистота УКМ является одним из серьезных препятствий на пути их внедрения в тепловые узлы с температурой нагревателя более 1700"С. Данная проблема может бьггь кардинально решена за счет очистки деталей из УКМ в атмосфере фреона при температуре 1200-2000 С или за счет формирования на них газофазного покрытия из карбида кремния, препятствующего диффузии микропримесей в рабочее пространство установок. [c.67]

    Другие способы очистки, или рафинирования, металлов включают перегонку (ра-( )инирование ртути), а также зонную плавку (очистка кремния или германия, исполь- 1уемых в полупроводниковой технике). Процесс зонной плавки заключается в том, что вдоль слитка (в форме стержня) подвергаемого очистке металла медленно перемещают спиральный нагреватель (рис. 22.19) при этом вдоль слитка перемещается расплавленная зона. При медленном перемещении расплавленной зоны вдоль слитка в ней концентрируются примеси, которые таким образом выводятся к концу слитка. Конец слитка с накопившимися в нем примесями отрезают, а оставшийся слиток оказывается свободным от примесей. [c.359]

    Окончательную очистку полупроводникового кремния проиодят вытягиванием монокристаллов Si из его расплава. [c.376]

    Примесные полупроводники приобрели в настоящее время наибольшее значение. Зная, каким образом примеси влияют иа свойства полупроводников, можно получить полупроводники с заданным соче-.танием свойств. При этом первоначальная очистка вещества должна быть очень высокой. Например, для кремния или германия общее содержание примесей должно быть уменьшено до 10" —10" %. Такая степень очистки стала возможной благодаря разработке новых методов. [c.95]

    Вариант 1. Некоторую очистку кремния от металлов, активных по отнощению к хлору (магний, цинк, кальций и т. д.), можно осуществить за счет своеобразного транспорта нримесей в виде хлоридов. Кремний помещают тонким слоем в фарфоровую или кварцевую лодочку и прокаливают в атмосфере хлорида кремния (IV). Для этого лодочку иомеща от в кварцевую трубку, заполняют ее хлором и закрывают пробками. В одну из пробок вставляют газоотводную трубку с краном. При открытом кране трубку с кремнием нагревают в электропечи при 900—1000 °С. При этом образуется небольшое количество хлорида кремиия (IV), который вступает на поверхности кремния в реакцию с примесями, например  [c.181]

    Вариант 2. Очистку кремния можно провести за счет транспорта кремния в виде хлорида (II). Можио применить ампульный метод (рис. 22). Ампулу заполняют хлоридом кремния (IV) или хлором. Горячий конец ампул )1 должен иметь температуру 1100 °С, холодный—900 °С, что практически осуществляется за счет некоторого выдвижения ампу.лы из псчп. [c.182]

    Самые незначительные примеси (порядка —10- 7о) посторонних элементов или их соединений делают материалы непригодными для применения их в новой технике. Например, присутствие в специальных сплавах миллионных долей процента примесей некоторых элементов резко снижает их качество незначительные посторонние включения делают многие металлы очень хрупкими, тогда как после тщательно очистки эти металлы становятся вязкими, ковкими и пластичными. Содержание в полупроводниковых материалах из особо чистых элементов и их соединений самых минимальных количеств посторонних элементов приводит к полной непригодности их для радиоэлектроники так в кремнии и германии, применяемых в производстве электронных приборов, содержание посторонних примесей не должно превышать 10 %, а в некоторых случаях не должно превышать одного атома нрнмесн на миллиард атомов кремния или германия. [c.20]


Смотреть страницы где упоминается термин Кремний очистка: [c.469]    [c.223]    [c.265]    [c.148]    [c.166]    [c.416]    [c.129]    [c.138]    [c.5]    [c.33]    [c.183]    [c.236]   
Руководство по неорганическому синтезу (1965) -- [ c.74 , c.84 , c.89 ]

Неорганические хлориды (1980) -- [ c.197 , c.198 , c.201 ]

Руководство по неорганическому синтезу (1953) -- [ c.91 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная очистка четыреххлористого кремния

Афонский, Д. П. Зосимович и Е. Е. Купчик. Очистка хромовокислых растворов от кремния

Конденсационная очистка кремния от примесей

Очистка воды коагулянтами кремния

Очистка кремния и германия

Очистка триметилхлорсилана от четыреххлористого кремния

Получение и очистка бора и кремния

Получение и очистка кремния

Разделение и очистка хлоридов кремния

Ректификационная очистка хлоридов кремния

Установка для очистки от кремния

Установка для очистки от кремния и деионизация

Физико-химические основы кристаллизационной очистки тетрагалогенидов кремния и германия. В. А. Молочко, Г. М. Курдюмов

Фосфорная кислота очистка от кремнефторида кремния ЗЬЗ

Четыреххлористый кремний глубокая очистка

Четыреххлористый кремний очистка от твердых хлоридо



© 2024 chem21.info Реклама на сайте