Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериальный репликация

    Начавшийся процесс репликации хромосомы бактерии продолжается до тех пор, пока не удвоится вся ДНК. В этом смысле бактериальная хромосома представляет собой единицу репликации — репликон. Другие молекулы ДНК, которые могут присутствовать в бактериальных клетках (см. гл. V), также представляют собой отдельные репликоны. [c.60]


    Репликация каждого бактериального репликона, в частности хромосомы Е. oli, как правило, начинается в одной избранной области ДНК, называемой ориджином репликации (от англ. origin — начало, обозначается ori). Ориджин репликации каждого репликона имеет вполне определенную последовательность ДНК. В результате инициации раунда репликации иа ориджине образуются одна илн [c.60]

    Бактериальная хромосома отличается от плаз.мидных репликонов тем, что ввиду ее больших размеров раунд репликации занимает промежуток времени, iio продолжительности сравнимый с [c.67]

    МУТАНТЫ С ЗАМЕДЛЕННОЙ ОСТАНОВКОЙ СИНТЕЗА ДНК. Мутанты dna Е. соИ, способные завершить начавшийся цикл бактериальной репликации, но неспособные при 42°С инициировать следующий раунд. [c.523]

    Все процессы, протекающие в бактериальной клетке, - образование аминокислот, нуклеотидов и других важных метаболитов, репликация, транскрипция, трансляция, катаболизм, высвобождение энергии, реакции на внешние воздействия - требуют участия белков. Однако энергетических ресурсов клетки не хватает для одновременного осуществления транскрипции и трансляции (экспрессии) всех структурных генов. Поэтому постоянно экспрессируются толь- [c.41]

    Бактериальная хромосома отличается от плазмидных репликонов тем, что ввиду ее больших размеров раунд репликации занимает промежуток времени, [c.67]

    В 1968 г. Оказаки сообщил, что в процессе репликации в бактериальных клетках появляются короткие фрагменты ДНК, получившие название репликационных фрагментов (или фрагментов Оказаки) [27]. В дальнейшем было сделано еще одно важное открытие—был обнаружен новый фермент ДНК-лигаза [28, 29], способный объединять два фрагмента ДНК в непрерывную цепь. Специфическое действие этого фер.мента заключается в репарации ( залечивании ) одноцепочечных разрывов ДНК- Разорванная цепь молекулы ДНК содержит, как это видно из уравнения (15-4), свободные З -гидроксильную и 5 -фосфатную группы, которые должны быть соединены. ДНК-лигаза Е.соИ активи- [c.198]

    Другие способы инициации репликации целесообразно рассмотреть в связи с вопросом о регуляции репликации. Молекулярные основы подобной регуляции лучше всего изучены в случае некоторых бактериальных плазмид. [c.63]

    ДНК-полимераза существует в различных формах в зависимости от выполняемых ею функций. Хотя это кажется невероятным, разнообразие форм ДНК-полимеразы обусловлено не субъ-единичной структурой, по крайней мере в бактериальных ферментах. Были охарактеризованы три различные формы фермента из бактерии Е. oli, которые обозначили как полимераза I, И и III. ДНК-полимераза I выполняет в основном репарирующие функции, тогда как ДНК-полимераза П1 является ферментом репликации. Функции ДНК-полимеразы II еще не ясны. Ферменты млекопитающих также существуют во множественных формах. [c.150]


    Блокируя эти операторы, репрессор предотвращает синтез ферментов, необходимых для исключения ДНК фага Л, из бактериальной хромосомы, а также для репликации и транскрипции остальных генов. [c.260]

    Помимо ряда общих ф-ций, свойственных очень многим П (таких, как автономная репликация или ф ция переноса), существует множество спец ф-ций, детерминируемых той или иной П У бактерий наиб изучены три главные группы плазмид Р-П (факторы фертильности) ответственны за половой процесс, К-П (факторы резистентности) обеспечивают устойчивость бактериальных клеток к действию антибиотиков (напр, к стрептомицину и тетрациклину) и сульфаниламидным препаратам, в Со1-П (колициногенных факторах) локализованы гены синтеза колицинов (бактерио-цинов)-токсичных белков, к-рые не действуют на производящую их клетку, но убивают др бактерии [c.553]

    Скорость репликации у прокариот очень высока. Репликация обычно происходит в одном участке, катализируется одним ферментом - ДНК-полимеразой и достигает скорости 1700 пар оснований в секунду, т.е. весь геном бактериальной клетки синтезируется за 40 мин. [c.55]

    Предшествующее описание репликации в эукариотических системах также хорошо применимо к кольцевым ДНК бактерий с одним изменением. Различные результаты показывают, что репликация бактериальной и вирусной кольцевой двуспиральной ДНК начинается в некой точке хромосомы и протекает затем одновременно в обоих направлениях от этой точки. Таким образом начальный интермедиат в форме глаза (—О—) превращается в форму —I по достижении конца линейной молекулы. Однако в случае бактериальной хромосомы форма глаза превращается в два кольца. [c.200]

    Активность полимеров (4.51) различна по разным тестам. Отмечено подавление вирусной и бактериальной репликации, а токсичность для животных в концентрациях только >300мкг/мл, что на порядок больше концентраций, подавляющих рост куль- [c.116]

    Для выяснения механизма репликации бактериальной хромосомы незаменимую роль сыграл анализ разнообразных мутантов, нарушающих репликацию ДНК. Синтез ДНК — функция жизненно важная, и мутации, инактивирующие ферменты синтеза ДНК, легальны. Поэтому, как и в других подобных случаях, были использованы условно летальные мутации, в частности температурочувствитель-ные (ts). [c.54]

    При каждом клеточном делении каждая молекула ДНК должна удваиваться, т. е. на каждом ориджине должен происходить в точности один акт инициацни репликации. В противном случае постепенно происходила бы утеря репликона или его бесконтрольное накопление. Более того, даже если репликон удваивается в среднем точно один раз на каждое клеточное деление, возможны существенные вариации количества копий этого репликона вокруг среднего значения в разных клетках бактериальной популяции. Такие вариации недопустимы, так как тоже в конце концов ведут к потере репликона. Таким образом, к регуляции репликации предъявляются достаточно жесткие требования регуляторная система должна чувствовать отклонения в обе стороны от среднего числа копий данного репликона и соответствующим образом менять частоту инициации на ориджине. Очевидно, что частота инициации должна быть согласована также со скоростью роста клеток. [c.63]

    Ммекулярный механизм транспозиции может быть различным у разных мобильных элементов, поэто.му лучше всего рассмотреть его на конкретных примерах. Достаточно изучен в этом отношении бактериофаг Ми, являющийся, по сути дела, необычным транспозо-ном. Этот умеренный бактериофаг встраивается в произвольный, участок хро.чосомы бактерии-хозяина. Если происходит индукция профага и начинается его вегетативное развитие, то он размножается, не вырезаясь из хромосомы, за счет повторных актов репликативной транспозиции. Вырезание фаговой ДНК из бактериальной происходит лишь при упаковке в фаговые частицы, когда репликация уже прошла. При репликации фага Л и транспозиция происходит с очень высокой частотой, поэтому именно эта система изучена лучше других. [c.115]

    В числе продуктов ранних генов — фагоспецифическая РНК-полимераза, закодированная в гене 1. Это относительно простой фермент, который в отличие от бактериальной РНК-полимеразы содержит всего одну полипептидную цепь (Мг=107 ООО). Вирусный фермент узнает иной набор промоторов — поздние промоторы, которые имеют сходные между собой, но не идентичные первичные структуры. Поздние промоторы расположены преимущественно в поздней области фагового генома, но встречаются и в ранней, в частности они предшествуют участку оП, с которого начинается репликация вирусной ДНК. Поздние гены транскрибируются с разной эффективностью и в определенной последовательности. Не все механизмы этой регуляции расшифрованы, но некоторые из них достаточно понятны. В частности, в поздней области есть районы, которые организованы сходно с активно транскрибируемы. районом генома нитчатых фагов (см. с. 290) такие участки имеют несколько промоторов и ограничены общим сильным терминатором. Отсюда считывается набор молекул мРНК разных размеров, но с одинаковыми З -концами. Чем ближе ген примыкает к тер.минатору, тем чаще он представлен в таком наборе. мРНК- С другой стороны, есть участки ДНК, которые содержат общий промотор и несколько последовательно расположенных относительно слабых терминаторов, ко- [c.298]


    Репликация одноцепочечного фага должна протекать в две стадии. Сначала на содержащейся в фаговой частице плюс-цепн образуется. комплементарная минус-цепь. Для инициации этой стадии необходимы еще один бактериальный белок, а именно фактор HF , и GTP. Образующиеся минус-цепи не остаются связанными с плюс-цепями. Они, по-внди-мому, освобождаются от репликазы в одноцепочечной форме и складываются, образуя высокоупорядоченные молекулы с большим числом шпилек. (Как и в случае плюс-цепей РНК фага MS2, показанных на рис. 15 19.) Далее минус-цепи копируются (фактор ИР для этого не нужен), образуя большое число новых плюс-цепей, которые включаются в готовые фаговые частицы. [c.245]

    Когда ДНК бактериофага проникает в бактериальную клетку, она обычно практически мгновенно начинает контролировать работу метаболического аппарата клетки и направляет его полностью на образование новых вирусных частиц. В результате приблизительно через 20 мин образуется 100—200 новых вирусных частиц, что приводит к лизису клетки и ее гибели. Принципиально отлично от этого ведут себя умеренные фаги. Проникнув в клетку, ДНК умеренного фага может репрессироваться и интегрироваться с бактериальным геномом точно так же, как фактор Р (рис. 15-2). При этом он переходит в состояние профага и вступает в гак называемую лизогенную фазу развития репрессированная ДНК фага реплицируется как часть генома бактерии, не причиняя эреда летке до тех пор, пока какой-нибудь фактор не снимет репрессию и не активирует интегрированный генетический материал. После этого происходят репликация фага и л нэис бактерии. Умеренные [c.258]

    X [260]. Аналогичным образом гены gfai-оперона Е. соН удалось включить при помощи фага % в геном вируса SV40. Важная особенность зтих методов состоит в том, что в них используется молекулярное клонирование новых комбинаций ДНК, включенных в бактериальную плазмиду [261]. Для этой цели были использованы плазмиды, способные к репликации в клетках Е. соИ. [c.295]

    Среди П, обеспечивающих устойчивость бактерий к антибиотикам, осн массу составляют т наз факторы множеств резистентности, несущие сразу неск соответствующих детерминант С помощью трансмиссибетьных П детерминанты резистентности легко могут распространяться между видами, способными к конъюгации На такие П гены резистентности могут передаваться с помощью транспозонов Кроме детерминант лек резистентности из числа функцион элементов П хорошо изучены гены нек-рых бактериальных токсинов, напр энтеротоксинов, вырабатываемых возбудителями кишечных инфекций, носителями т наз Тох-П (факторов патогенности энтеробактерий) Показана способность Тох-П передаваться между бактериями в организме животных и человека На этих П могут находиться также детерминанты резистентности к антибиотикам В этой связи активно развивается новое направление в практич бактериологии-поиск и создание в-в, избирательно подавляющих репликацию плазмид или экспрессию их генов Пример таких в-в-клавулановая к-та (ф-ла I) и ее производные - ингибиторы Р-лактамазы [c.553]

    Фаг М13 — это одноцепочечная циклическая ДНК длиной около 6500 нуклеотидов. После инфицирования бактериальной клетки одноцепочечная ДНК фага превращается в двуцепочечную репликативную форму (RF), которая подобна плазмиде. Фаговая ДНК содержит, кроме того, короткий участок из 500 нуклеотидов, названный как МП (межгенная последовательность), не существенный для ее жизнедеятельности. Именно в этот участок МП репликативной формы ДНК после расщепления ее с помощью лигазы вставляют чужеродную ДНК. Введение рекомбинантной двуцепочечной молекулы в клетку Е. соИ приводит к ее репликации, синтезу (+) цепи, упаковке последней в белковый чехол и вьщеле-нию фага в среду. Инфицированная нитевиднь фагом клетка продолжает делиться, вьщеляя в окружающую среду большое количество фага. Этот фаг содержит в вирионе одноцепочечную циклическую ДНК, в которую встроена одна из цепей чужеродной ДНК. [c.120]

    Клеточная мембрана — это не просто мешок. Она регулирует перенос низкомолекулярных веществ в клетку и из клетки. У бактерий с внутренней поверхностью мембраны связаны ферменты, катализирующие процессы окисления. Нередко бактериальные мембраны образуют складчатые участки, имеющие в разрезе вид многослойных структур это так называемые мезосомы (рис. 1-1 и 1-2, Г). Предполагается, что в мезосомах протекают специализированные процессы обмена веществ и репликация ДНК. В клетках Е. oli мезосомы выявляются не всегда, и все же, видимо, репликация ДНК у этого организма происходит на определенных участках поверхности мембраны и регулируется связанными с мембраной ферментами. Образование новой мембраны (перегородки) между делящимися клетками происходит синхронно с синтезом ДНК. [c.21]

    РИС. 2-23. А. Двойная спираль ДНК В-форма. (Arnott S., Hukins D. W. L.. JMB, 81, 93—105, 1975.) Б. Электронная микрофотография молекулы ДНК бактериального вируса (бактериофаг Т7) в момент ее репликации. Вирусная ДНК представляет собой длинный ( 14 мкм) дуплексный стержень, содержащий около 40 000 пар оснований. Виден небольшой репликативный глаз — участок, где происходит удвоение ДНК. Синтез ДНК начинается в особой точке (точке инициации), расположенной иа расстоянии, равном 17% длины молекулы, от одного из концов дуплекса. Окраска уранилацетатом негативное контрастирование. (С любезного разрешения Т. Wolfson [c.131]

    Биологическое действие актиномицинов основано иа образовании комплексного соединения с ДНК (рис. 2-46), при этом подавляется ДНК-эависимый синтез РНК (транскрипция). Уже одна молекула актиномицина, приходящаяся на 1000 пар оснований, приводит к 50"/о-ному ингибированию синтеза мРНК. Более высокая концентрация актиномицина подавляет также репликацию ДНК. Из того что актиномицины в противоположность пенициллинам не имеют принципиального различия в действии на бактериальные клетки и клетки инфицированного организма-хозиина, неизбежно следует высокая токсичность этих пептидных антибиотиков. Цитостатическую активность актиномицинов используют при исследованиях в области клеточной биологии. [c.301]


Смотреть страницы где упоминается термин Бактериальный репликация: [c.58]    [c.58]    [c.69]    [c.118]    [c.120]    [c.196]    [c.257]    [c.518]    [c.126]    [c.69]    [c.118]    [c.120]    [c.57]    [c.58]    [c.74]    [c.116]    [c.438]   
Гены (1987) -- [ c.398 ]




ПОИСК







© 2025 chem21.info Реклама на сайте