Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряд электрический Идеальная жидкость

    Как было показано Шмидом, первые два из этих уравнений — лишь результат различного обозначения третье уравнение показывает соотношение между термодинамическим приближением и идеальным выводом, основанным на теории фиксированного заряда, предложенной Шмидом. Было сделано предположение, что электрически заряженная жидкость, заполняющая поры, движется с такой же линейной скоростью, что и противоионы. К этому вопросу мы вернемся позже. [c.111]


    Электрофорез означает движение диэлектрической частицы в растворе электролита под действием электрического поля. Взаимодействие электрического поля с диффузным слоем приводит к относительному движению жидкости и твердого тела (разд. 62). Такое относительное движение продвигает частицу через жидкость. Анализ этого явления равным образом применим и к металлической частице, если скачок потенциала на границе раздела находится в области идеальной поляризуемости поверхности и заряд диффузного слоя существенно однороден по поверхности частицу. [c.230]

    Однако электрические методы имеют и недостатки. Так, если жидкости обладают заметной вязкостью, то эмульгирование затруднительно или вообще невозможно. Наличие заряда у капель искажает измерения. Если будут найдены способы для нейтрализации зарядов капель, то электрические методы станут идеальными для многих исследовательских работ. [c.60]

    Поверхность твердых тел жесткая, имеет кристаллическое строение (металлы - сталь, бронза, медь, алюминий и др.). На поверхности твердых тел и жидкостей (нефтепродукты, вода) находятся молекулы с нескомпенси-рованными связями. Поверхность деталей двигателей и механизмов всегда неоднородна и не может быть идеально гладкой. Полированные металлические поверхности состоят из нескольких тонких слоев оксидного, псевдо-аморфного (с электрическим зарядом) и зон деформации основного металла. На твердой поверхности имеются микроскопические участки с химически активными группами атомов основного металла и примесных металлов (активные центры). [c.45]

    Если внутренняя и внешняя жидкости представляют собой идеальные диэлектрики и на межфазной поверхности нет свободных зарядов или жидкость в капле обладает высокой проводимостью, а внепгаяя жидкость — изолятор, то внешнее электрическое поле приводит к появлению распределенной по поверхности капли силе, обусловленной разрывом электрического поля на межфазной поверхности [55]. Эта сила перпендикулярна межфазной поверхности и направлена от жидкости с большей диэлектрической проницаемостью или от [c.270]

    Теория статического равновесия капли в электрическом поле (электрогидростатика) развита в работах [56 — 62] для идеальных сред — диэлектриков и проводников. Однако реальные жидкости представляют собой жидкости с конечной проводимостью и диэлектрики с конечной диэлектрической проницаемостью. Исключение составляют сверхпроводящие жидкости при очень низких температурах, например жидкий гелий. Учет конечной проводимости значительно осложняет задачу как математически, так и физически, поскольку возможные формы капли отличны от форм идеально проводящих капель. Так, капля может принять форму вытянутого вдоль направления электрического поля эллипсоида, вытянутого вдоль направления, перпендикулярного электрическому полю эллипсоида, а также сферическую форму, что наблюдалось в экспериментах [63]. Теоретическое объяснение этим феноменам дано в работе [64]. Показано, что у капли конечной проводимости электрический заряд аккумулируется в поверхностном слое капли, порождая неоднородное поверхностное тангенциальное электрическое напряжение. Это напряжение индуцирует в жидкости касательные гидродинамические напряжения, влияющие на деформацию капли. Величины напряжений зависят от свойств жидкостей и от напряженности внешнего электрического поля. Поэтому в зависимости от соотношения между электрическими и гидродинамическими поверхностными напряжениями капля может принимать одну из перечисленных выше форм. Решение задачи с учетом внутренней циркуляции жидкости проведено в [64] в предположении малой деформации поверхности капель и медленного стоксова течения, что позволило получить приближенное асимптотическое решение. [c.271]


    Рассмотрим захват и отражение капель цилиндром (рис. 13.22). Сплошной линией показаны траектории подходя-1ЦИХ капель. Вдали от цилиндра капли движутся прямолинейно, поскольку на расстояниях 2> к электрическое поле и поток жидкости практически однородны. На расстояниях 2 < к появляется составляющая силы, параллельная плоскости электрода, поэтому на расстояниях г<к/2 от сетки траектории заметно отклоняются от прямых. При г<Ес/Ке капли попадают в область возмущения, вносимого сеткой, и скорость жидкости снижается от скорости невозмущенного потока до нуля на поверхности сетки. На границе области возмущения линии тока искривляются, но абсолютная величина скорости еще близка к поэтому происходит изменение направления движения капли, и она несколько смещается вниз по потоку, приближаясь к цилиндру. Однако вблизи цилиндра скорость падает, и капля под действием электрической силы осаждается на цилиндре. Пунктирной линией показаны траектории движения отраженных капель. Существует критический угол такой, что для любого е>0 после перезарядки в точке 0 + е) капля остается в зоне фильтрования и уходит вверх против потока, а после перезарядки в точке (Кс, 9сг е) -- покидает зону и уходит вниз по потоку. Для траекторий отраженных капель при 0 > 0 наблюдается значительное искривление траекторий. Таким образом, возле сетчатого электрода возникают два встречных потока разноименно заряженных капель повышенной объемной концентрации. Эти капли могут интенсивно взаимодействовать друг с другом, что приводит к увеличению частоты столкновения и укрупнению капель. Учет этого эффекта довольно сложен и требует решения кинетического уравнения для распределения капель не только по размерам, но и по зарядам. Если этим эффектом пренебречь, то получаемый коэффициент уноса (идеальный коэффициент) будет несколько завышен. [c.346]

    Взаимодействия между молекулами вызываются, согласно современным представлениям, электрическими силами благодаря наличию электрических зарядов в составе каждой нейтральной молекулы. Существование таких взаимодействий между молекулами приводит к их ассоциации. На возможность ассоциации молекул в газах указывал ряд исследователей, начиная еще с конца прошлого века (Натансон, Дюринг, Лерэ, Ван-дер-Ваальс и др.). Нернст также предполагал, что еще до насыщения в перегретом паре прису1ствуют не только простые, но и сложные молекулы. Механизм ассоциации реальных газов рассматривается в работах А, С. Предводителева, И. И. Новикова, М. П. Вукало-вича и др. Учет явления ассоциации при выводе уравнений состояния реальных газов приводил многих авторов к весьма удовлетворительному совпадению с опытом [261. Это объясняется тем, что присутствие комплексных молекул является одной из причин отклонений в поведении реальных газов по сравнению с идеальным газом. При сложных столкновениях может случиться, что молекулы после соударения не смогут преодолеть силы притяжения и будут двигаться совместно. Такой комплекс может быть достаточно устойчивым. По предположению Каллендера в водяном паре могут образовываться сложные комплексы, содержащие до пяти молекул [132]. Для жидкостей существование ассоциированных групп проеерено на весьма большом экспериментальном материале. Этого нельзя сказать о газах, так как для паров и газов таких экспериментальных данных значительно меньше. Спектроскопия обнаруживает группы молекул в парах некоторых веществ (К, Сс1, 2п). [c.137]


Смотреть страницы где упоминается термин Заряд электрический Идеальная жидкость: [c.60]    [c.31]   
Введение в молекулярную теорию растворов (1959) -- [ c.127 ]

Введение в молекулярную теорию растворов (1956) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Заряд электрический



© 2025 chem21.info Реклама на сайте