Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы с числом атомов более пяти

    Атомы ванадия в решетке окиси ванадия имеют валентность, равную пяти. Когда в качестве примеси в решетку вводится атом вольфрама, появляется один избыточный электрон, так как вольфрам имеет шесть валентных электронов (случай а, рис. 2). Однако при введении атома вольфрама в решетку окисла ванадия шестой валентный электрон вольфрама, связанный со своим атомом но очень сильно, может при термических колебаниях мигрировать сквозь решетку окиси ванадия как переносчик электрического тока или влиять на адсорбцию кислорода на поверхности. Электронейтральность кристалла сохраняется вследствие того, что избыток положительного заряда атома вольфрама нейтрализует избыток электронов, имеюш ихся в кристалле. Однако электрон может мигрировать сквозь решетку и проводить электрический ток, в то время как положительный заряд дол кен оставаться локализованным в том месте решетки, в котором находится атом вольфрама. В результате вольфрам способствует электронной проводимости в твердом веществе. В противоположность этому, когда в решетке окиси ванадия атом ванадия замещен на титан (случай б рис. 2), он отдает только четыре валентных электрона. Пятый электрон, необходимый для валентной структуры кристалла, отдается одним из атомов ванадия, входящих в решетку окисла, что приводит к образованию так называемых положительных дырок в твердом веществе. В этом случае перенос электрического тока и электрическая проводимость возникают при движении этих положительных дырок. В обзорной литературе, указанной во вступительной части этого раздела, довольно подробно излагаются количественные законы, управляющие скоростью движения потока электрических зарядов, и энергетические факторы, управляющие их движением от одного положения в решетке к другому. Дефекты решетки, вызванные либо нестехио-метричностью состава, либо включением инородных примесей, несут ответственность за перенос электронов от твердого вещества к адсорбированной молекуле или, наоборот, за переход электронов из адсорбированной молекулы в решетку. Подобным же образом движение электронов или положительных дырок в твердом веществе имеет большое значение для каталитического поведения полупроводника кроме того, этим можно объяснить быстрое образование дефектов решетки при соударении адсорбирующейся молекулы с поверхностью. Признано также, что дефекты не локализуются в определенном месте решетки (как показано на рис. 1 и 2), а распространяются на довольно большое число атомов. Представления, излагаемые в настоящем разделе, очень упрощены, но будут полезны читателю как предварительная, чисто качественная картина, прежде чем он сможет получить сведения из более авторитетных обзоров (ссылки [4, 6 и 12]). [c.367]


    Влияние центров, изображенных на рис. 15.10, на кинетику реакции не вполне ясно. Связывание в полости, по-видимому, предполагает конкурентное ингибирование по отношению к любому субстрату, располагающемуся подобно Gly-Tyr. С другой стороны, возможно, что ингибитор, находящийся вблизи остатка Туг-198, присоединяется к атому цинка, не создавая стерических препятствий связыванию длинных пептидов, рассмотренному в разд. 2.4.1. Координационное число атома цинка при таком неконкурентном взаимодействии, вероятно, становится равным пяти. Данные по связыванию, из которых вытекает стехиометрия 1 1, казалось бы, свидетельствуют в пользу того, что ингибитор не может одновременно заполнять оба центра, обнаруживаемые кристаллографическим методом [70]. Однако факт защиты от модификации двух тирозиновых остатков при высокой концентрации фенилпропионата [99] проще всего объясняется одновременным присоединением двух (или более) молекул ингибитора. Оглядываясь назад, приходится сожалеть, что ингибитор, ведущий себя столь сложным образом, так часто использовался для изучения активного центра КПА. [c.535]

    Поясним указанные закономерности на примере. Рассмотрим ряд молекул общей формулы АпВгя+г Для п от 1 до 20 будет существовать более 300000 структурных изомеров таких молекул, а с учетом поворотной изомерии число различных молекул Лп гп+г дляп от 1 до 20 будет исчисляться миллионами. Однако число видов и разновидностей простейших структурных элементов, встречающихся во всех этих молекулах и сохраняющих свое химическое строение и геометрическую конфигурацию, будет во много раз меньше. Структурные элементы, включающие ценье-вой атом А и его первое окружение, во всех этих молекулах могут быть только пяти видов  [c.23]

    Соединения I I и I I3 играют определенную роль в количественном анализе. Эти полярные молекулярные вещества построены таким образом, что более тяжелый атом координирует вокруг себя более легкие атомы. Всегда нечетное число атомов в молекуле увеличивается при увеличении соотнощения радиусов НболЩмлл- Так, атом иода может соединяться с семью атомами фтора, но лишь с одним атомом брома. Бром может координировать самое больщое пять атомов другого галогена. Данные по устойчивости межгалогенных соединений, представленные на рис. В.27, дают информацию и о прочности связей в их молекулах. Геометрию молекул можно предсказать исходя из ее электронной конфигурации и типа связей. [c.501]


    США) Марио Молина и Шепвуд Роулэнд. Они показали, что молекула оксида хлора и атом хлора — сильнейшие катализаторы, способствующие разрушению озона. Путь молекул хлора в стратосферу занимает один-два года. Достигают стратосферы только химически стабильные молекулы, которые не разрушаются под действием солнечных лучей, химических реакций и не растворяются в воде. Именно такими качествами обладают молекулы ХФУ. Время их жизни — более ста лет. Молекулы ХФУ тяжелее воздуха, и число их в стратосфере крайне мало три—пять молекул ХФУ на десять миллиардов молекул воздуха. Под действием ультрафиолетового излучения от молекул ХФУ отрывается атом хлора, а оставшийся радикал легко окисляется, создавая молекулу оксида хлора и новый радикал. Атом хлора и молекула оксида хлора активно включаются в каталитический цикл разрушения озона. Одна молекула хлора, достигающая атмосферы, способна разрушить (10...100) тыс. молекул озона. [c.6]

    Если удлинение пептидной цепи на два остатка (АТ I) понижает охно сительную энергию конформаций группы А, то укорочение на два остатка по сравнению с АТ II (АТ П-(1-6)-пептид) действует в противоположную сторону две из четырех конформаций группы В имеют самую низкую энергию, не превышающую 1,0 ккал/моль. Изменения, однако, не так резки, как в случае АТ I, и конформационные возможности гексапептидного аналога ангиотензина, лишенного с потерей двух остатков ряда стабилизирующих взаимодействий, естественно, возрастают. Реальными при определенных внешних условиях становятся не только конформации группы А, но даже j-F), особенно D,. Замены в молекуле АТ II остатков Val в третьем и пятом положениях на остатки Pro ([Рго ]-АТ II и [Pr ij-AT II) и Ala ([А1а ]-АТ II и [А1а ]-АТ II) преследовали цель внести определенные, заранее известные стерические затруднения и запретить реализацию большого числа конформаций (первые два пептида) и, напротив, сделать аминокислотную последовательность АТ II более лабильной, а также оценить ограничительный эффект на формирование пространственного строения молекулы достаточно объемных и разветвленных при атоме СР остатков Val (вторая пара пептидов). [c.574]

    Соединения Pt ll). В настоящее время отсутствуют доказательства образования платиной(II) более четырех компланарных связей. Единственными исключениями являются соединения, упомянутые в разд. 27.9.6. Как и в случае Pt(IV) (разд. 27.9,8), формулы некоторых соединений заставляют предполагать иные координационные числа, однако структурные исследования неизменно подтверждают наличие четырех связей. В комплексе [Pt(a a )2 l]K (а) [1] число связей не достигает пяти, так как один из асас-лигандов координируется через атом углерода рентгеноструктурное исследование соединения, формулу которого записывали ранее в виде [Р1(ННз)4(СНзСМ)2]С12- НгО, показывает, что оно не является примером шестикоординационного комплекса платины (II), а имеет вид Pt(NH3)2[ H3 (NH2)NH]2 l2-H20 [2]. Платина образует четыре компланарные связи с двумя молекулами NH3 и двумя молекулами ацетамида (б). [c.391]

    Рассмотрение моделей кристаллов разного размера и соответствующие расчеты показывают, что частицы металла, на которых происходит прочная адсорбция азота, сопровождающаяся появлением активной в ИК-снектре полосы, имеют на поверхности наибольшее число так называемых В- цен-тров, т. е. центров, будучи адсорбированным на которых атом металла имел бы контакт с пятью соседними атомами металла. Это в свою очередь позволяет прийти к выводу о том, что, несмотря на относительно высокую теплоту адсорбции и отсутствие подвижности, молекулы азота не образуют с атомами металла химической связи, а удерживаются на поверхности дисперсионными силами и сильным электрическим полем Вд-центров, которое возникает в результате неполной компенсации электрических полей ядер и электронов атомов металла этих центров и поляризует адсорбированные молекулы (рис. 2). Дисперсионное взаимодействие молекул азота с В 5-центрами должно быть более сильным, чем с плоской поверхностью кристалла, так как адсорбированная молекула взаимодействует в этом случае с большим числом атомов металла. Хардевелд и Монтфорт [11] считают, что высокую интенсивность и значительное смещение полосы поглощения физически адсорбированных молекул относительно частоты колебания свободной молекулы азота можно объяснить сильной поляризацией адсорбированных молекул электрическим полем Вд-центров. [c.118]

    Углеводы- полигидроксиальдегиды или кетоны с эмпирической формулой (СНзО) . Они делятся на моносахариды, или сахара (один альдегидный или ке-тонный остаток) олигосахариды (несколько моносахаридных остатков) и полисахариды-крупные линейные или разветвленные молекулы, содержащие больщое число моносахаридных остатков. Моносахариды, или простые сахара, имеют одну альдегидную или кетонную группу. Они содержат по крайней мере один асимметрический атом углерода и потому могут существовать в виде разных стереоизомеров. Наиболее распространенные в природе сахара, такие, как рибоза, глюкоза, фруктоза и манноза, относятся к D-ряду. Простые сахара, содержащие пять или более атомов углерода, могут существовать в виде замкнутых циклических полуацеталей-фураноз (пятичленные кольца) или пираноз (шестиг членные кольца). Фуранозы и пиранозы встречаются в виде аномерных а-и Р-форм, которые в процессе мутаротации могут превращаться друг в друга. Сахара, способные восстанавливать окислители, называются восстанавливающими (редуцирующими) сахарами. [c.322]


    На схеме пунктиры со стрелками соединяют вакантные 3d-op-битали с парами Зр-электронов. Пара р-электронов одного атома хлора образует связь с другим атомом хлора, располагаясь на его свободной -орбитали в свою очередь, этот атом соединяется с первым за счет своей пары р-электронов и чужой свободной ii-орбита-ли. Таким образом, каждый атом хлора молекулы СЬ является и донором и акцептором электронов одновременно. Атом хлора имеет большее число электронов, чем фтор, и больше по размеру. Его ковалентный радиус 0,99 А, т. е. в полтора раза больше, чем у фтора, а электроотрицательность 2,83, почти на полторы единицы меньше. У атома хлора имеется такая особенность. Его потенциал ионизации меньше, чем у фтора (это естественное следствие большего размера атОхМа), но сродство к электрону (370 кДж/г-атом) выше, чем у того же фтора (350,7 кДж/г-атом). Энергия диссоциации молекулы хлора примерно в полтора раза больше, чем у фтора. Существует на этот счет два мнения. Согласно первому из них в молекуле фтора ядра расположены ближе и сильнее их взаимное отталкивание, приводящее к более легко.му разрыву. В соответствии с другим повышение энергии диссоциации — следствие наличия дополнительного я-связывания по донорно-акцептормому хмеханизму. Такая особенность объясняет необ-ходимость затраты энергии на разрыв дативных связей в молекуле хлора. Свободная З -орбиталь и относительно небольшая энергия возбуждения (861 кДж/моль), требующая для перевода одного из р-электронов на -подуровень, позволяет одному атому хлора образовывать три связи. Он действует в таком случае как атОхМ с тре.мя неспаренными электронами, образуя ковалентные соединения типа IF3 (жидкость с /к1ш=12°С) и дал е с пятью неспаренными электронами ( 1F ). Образование положительных ионов хлора требует довольно больших затрат энергии. Так, для получения иона С + в газовой фазе требуется 1370 кДж/моль атомов. Поэтому в тех соединениях, где [c.271]

    Номенклатура двухъядерных цикланов. Двухъядерные углеводороды можно разделить на пять групп в зависимости от взаимного расположения циклов а) циклы разделены цепочками из атомов углерода б) циклы непосредственно соединены простой С—С связью между двумя атомами, принадлежащими этим циклам в) циклы имеют один общий углеродный атом (тираны, или спироцикланы) г) циклы имеют два обид,их атома углерода (цикланы с конденсированными ядрами)-, д) циклы имеют три пли более общих атомов углерода [мостиковые цикланы). Соединения последних двух групп иногда объединяют под общим названием собственно оиииклических соединений. При замыкании каждого нового кольца число атомов водорода в молекуле уменьшается на два, а потому двухъядерные цикланы будут иметь состав С,,Н2,г-2- [c.16]

    К числу наиболее детально изученных соединений переходных элементов относятся карбонилы металлов, самым известным из которых является N1(00)4. Карбонилы других переходных металлов менее устойчивы, и их получают с большим трудом. В то время как карбонил никеля получается при непосредственном взаимодействии металла с СО, большинство других карбонилов синтезируют более сложным путем, например реакцией СО с галогенидом металла при высоком давлении в присутствии сильного восстановителя, например металлического Ма или oH5MgBr. К настоящему времени из карбонилов металлов лучше всего охарактеризованы У(СО)в, Мп2(СО)ю, Ре(С0)5, Рег(С0)9, Рез(СО)12, Со2(СО)8 и Ni (С0)4. Первый из них наименее устойчив. Структуры остальных карбонилов можно объяснить, основываясь на том, что у атома металла достигается заполненная электронная оболочка путем обобществления электронов от групп СО или с другим атомом металла. Так, Сг имеет шесть валентных электронов (Зс и 4х) и приобретает еще 12 электронов от шести групп С = О , так что возникает оболочка из 18 электронов, т. е. конфигурация криптона. Аналогично можно объяснить Ре(СО)э и N ( 0)4. В Мп2(С0)ю каждый атом Мп окружен октаэдрически пятью молекулами СО и другим атомом Мп. Связь Мп — Мп возникает со спариванием спинов электронов и объясняет наблюдаемый диамагнетизм соединения, на первый взгляд непонятный, так как Мп имеет нечетное число валентных электронов (7). И в этом случае достигается заполненная оболочка, поскольку каждый атом Мп окружен шестью своими несвязывающими валентными электронами, двумя электронами, обобществленными между атомами Мп, и десятью электронами от пяти молекул СО. Структура Ре2(С0)д состоит из двух октаэдров Ре(СО)в с тремя обобществленными молекулами СО. Кроме того, происходит спаривание спинов в связи Ре — Ре. Подсчет числа электронов и в этом случае приводит к 18 электронам у каждого атома железа (восемь валентных электронов, шесть электронов от трех необобществленных групп СО, три электрона от трех обобществленных групп СО и один электрон от второго атома Ре). Структуры Рез(СО)12 и Сог(СО)8, по-видимому, сходны в том, что в них имеются мостиковые СО и связи металл — металл. [c.209]

    В последнее время существование на поверхности силикатных адсорбентов центров адсорбции второго рода подтверждено работами но измерению теплоты смачивания силикагелей [32] и спектроскопическими исследованиями пористого стекла, выполненными Фольманом и Йейтсом [8]. Для однозначного решения вопроса о природе центров адсорбции второго рода в настоящее время нет достаточных данных. Однако не вызывает сомнения, что центрами второго рода не могут быть ультрамикропоры или загрязнения поверхности примесями, так как в противном случае трудно было бы объяснить зависимость количества этих центров от температуры предварительной вакуумной тренировки, которая обнаруживается в случае адсорбции хлороформа. Из общепринятых представлений о структуре поверхности пористого стекла следует предположить, что центрами второго рода могут быть атомы кремния или кислорода. Представляется маловероятным, что молекула аммиака, имеющая электроотрицательный атом азота, может присоединяться к электроотрицательному атому кислорода поверхности адсорбента. Более вероятно, что центрами адсорбции для молекулы аммиака служат поверхностные координационно ненасыщенные атомы кремния. Такая точка зрения оправдана тем, что в некоторых случаях, например при взаимодействии кремниевой кислоты с водой, координационное число атомов кремния равно не четырем, как обычно, а пяти или шести [33]. Впрочем, вполне возможно, что при адсорбции различных соединений в качестве центров адсорбции второго рода выступают различные молекулярные группы поверхности силикатного адсорбента. [c.78]

    Число стереоизомеров для любого соединения равно 2", где п — число асимметрических центров в молекуле. С помощью про- екций Фишера (рис. 21) можно изобразить 2 =16 стереоизомеров глюкозы. Молекула глюкозы обладает пятью центрами асимметрии следовательно, возможны 2 =32 изомера, включая а- и р-фор-мы каждой альдогексозы. Буква а используется тогда, когда в плоскостной проекции гидроксидная группа при атоме С-1 находится на той же стороне, что и кислородный атом кольца. Буква Р соответствует форме, у которой эта гидроксидная группа находится на стороне, противоположной кислородному атому кольца. Среди углеводов в-конфигурации а-изомер всегда имеет более положительное удельное вращение, чем р-изомер. В ь-ряду (про- екционные формулы получаются путем зеркального отражения Е-структур, изображенных выше) аномером с более отрицательным вращением является а-аномер. [c.30]


Смотреть страницы где упоминается термин Молекулы с числом атомов более пяти: [c.183]    [c.118]    [c.307]    [c.132]    [c.253]    [c.203]    [c.183]    [c.82]    [c.18]   
Смотреть главы в:

Молекулярные постоянные неорганических соединений -> Молекулы с числом атомов более пяти




ПОИСК





Смотрите так же термины и статьи:

Болов

Числа атомов



© 2025 chem21.info Реклама на сайте