Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бьеррума представление о ионной ассоциации

    Ассоциация ионов. Бьеррум [15] предложил метод расчета, основанный на представлении об ассоциации ионов с образованием ионных пар (ср. стр. 135). С помощью этого метода можно избежать трудностей, связанных с интегрированием уравнения Пуассона в тех случаях, когда нельзя сделать допущения о [c.220]

    Статистический расчет показывает, что представление о точечных ионах приводит к физическому абсурду — полной ассоциации ионов в комплексы с компенсированными зарядами. Однако если радиусы ионов достаточно малы, то такая частичная ассоциация может иметь место, на что впервые обратил внимание Бьеррум. [c.396]


    Ассоциация ионов. Влияние растворителя на кислотно-основные процессы в амфотерной среде, характеризуемой средними и высокими значениями диэлектрической проницаемости, часто успешно интерпретируется с помощью представлений об изменениях диэлектрической проницаемости (электростатические эффекты) и основности (неэлектростатические эффекты). Когда диэлектрическая проницаемость понижается, то увеличивается степень ассоциации вследствие образования ионных пар (Бьеррум [71]) и более высоких ассоциатов — тройников и дипольных агрегатов [22, 72]. Устойчивость продуктов ассоциации выражается с помощью константы равновесия, которую можно найти путем измерения электропроводности или термодинамическими методами. Величина константы образования ионных пар при данном значении диэлектрической проницаемости оценивается с помощью уравнения, предложенного Денисоном и Рамзи [73, 74].  [c.182]

    Современная теория ассоциации ионов Семенченко—Бьеррума—Фуосса—Крауса, объясняющая аномалии в электропроводности в растворителях с низкими диэлектрическими проницаемостями за счет электростатического взаимодействия ионов, является дальнейшим развитием теории Саханова на основании современных представлений о сильных электролитах. [c.33]

    Бьеррум [24] признавал, что теория полной ионизации должна быть модифицирована, чтобы она могла учитывать ионные пары. Его теория не объясняет изменения константы ассоциации Ка при изменении диэлектрической проницаемости растворителя и это вместе с искусственностью одного из его допущений позволяет критиковать эту теорию и в конечном счете заменить ее теорией, представленной в работах [25, 26], которая [c.280]

    Это положение было высказано в 1905-1907 годах независимо друг от друга австралийским физикохимиком У. Сазерлендом и датским физикохимиком Н. Бьеррумом. Причем датский ученый позднее четко констатировал различие в протекании диссоциации в растворах слабых и сильных электролитов (1918 г.). Он же, развивая теорию ассоциации ионов в растворе (представление об образование ионных пар в растворах сильных электролитах было введено позднее), в 1920 г. ввел термин коэффициент активности . [c.54]

    Представление об ассоциации ионов и образовании ионных пар дает четкое объяснение аномалий поведения раствора, образованного растворителем с малой диэлектрической проницаемостью. В таких растворах межионные силы очень велики и про-десс ассоциации должен идти очень далеко. Отмеченная ситуация имеет место в твердых растворах на основе таких полупроводников, как кремний и германий. Процесс образования ионных до-норно-акцепторных пар в этих растворах проявляется очень ярко и доказывается экспериментальными данными по исследованию холловской концентрации носителей заряда. Следует четко разграничивать понятия ассоциации и неполной диссоциации, на что указывал в своих работах и сам Бьеррум. [c.400]


    В предыдущей главе был подробно рассмотрен вопрос об электропроводности очень, сильно диссоциированных электролитов в средах с высокой диэлектрической постоянной. С помощью уравнения электропроводности Онзагера можно показать, что поведение большей части таких растворов свидетельствует о полной диссоциации растворенного вещества при малых концентрациях, В неводных средах, согласно теории ассоциации ионов Бьеррума (гл, 1П, 7)., по мере уменьшения диэлектрической постоянной растворителя увеличивается стремление ионов всех электролитов к ассоциации. Экспериментальные результаты, которые будут рассмотрены ниже, подтверждают предетавления Бьеррума. В соответствии с этими представлениями в средах с малой диэлектрической постоянной все электролиты являются частично ассоциированными или слабыми и деление электролитов на сильные и слабые становится до некоторой степени условным. Тем не менее деление электролитов на сильные и слабые в соответствии с тем, являются ли они сильно или слабо диссоциированными в водных растворах, обычно сохраняется при описании свойств электролитов независимо от того, какая среда выбрана в качестве растворителя. [c.182]

    На рис. 96 представлен наиболее яркий пример обратной последовательности для катионов, наблюдающейся в случае гидроокисей, когда кривые для разных катионов сильно отличаются друг от друга. Наибольшим коэффициентом активности обладает гидроокись цезия, наименьшим — гидроокись. пития. Эта последовательность прямо противоположна той, которая наблюдается для хлоридов, бромидов и иодидов. Такой эффект можно частично объяснить взаимодействием ионов и образованием ионных пар. Согласно теории ассоциации ионов Бьеррума (гл. П1, 7), 1,1-элек-тро.яиты считаются сильными, если расстояние сближения ионов больше или равно 3,5 А. Приведенные на рис. 96 значения согласуются со средними расстояниями сближения ионов 3 3,5 4 и 4,2 А соответственно для гидроокисей лития, натрия, калия и цезия. Согласно теории Бьеррума, все указанные гидроокиси являются сильными электролитами, хотя в случае гидроокиси лития может происходитх некоторая ассоциация ионов. Эти результаты согласуются с выводами, сделанными на основании измерений электропроводности. Примерно такие же результаты наблюдаются и в случае ацетатов, хотя для ацетатов расхождение кривых не столь велико. [c.363]

    Систематические исследования влияния изменений характера или концентрации солевого фона на константы устойчивости производятся обычно для нахождения отношения активностей (см. раздел II, 1, А). Изменения термодинамических функций можно рассмотреть с точки зрения конкурируюхцих реакций комплексообразования [240] или изменения коэффициентов активности, входяш их в уравнения (5), (6), (31)— (33). Устойчивости комплексов ионов металлов изучались в смесях водных и неводных ( смешанных ) растворителей главным образом по двум причинам. Во-первых, изменение констант ассоциации в зависимости от диэлектрической проницаемости среды рассматривали как способ проверки представлений Бьеррума—Фуосса об ионных нарах [62]. Во-вторых, многие органические лиганды и их комплексы настолько плохо растворимы в воде, что соответствующие равновесия можно изучать только в смешанных растворителях. [c.69]


Смотреть страницы где упоминается термин Бьеррума представление о ионной ассоциации: [c.523]    [c.118]    [c.858]   
Введение в электрохимию (1951) -- [ c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация ионов

Бьеррум



© 2025 chem21.info Реклама на сайте