Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория Фуосса и Крауса

    Современная теория ассоциации ионов Семенченко—Бьеррума—Фуосса—Крауса, объясняющая аномалии в электропроводности в растворителях с низкими диэлектрическими проницаемостями за счет электростатического взаимодействия ионов, является дальнейшим развитием теории Саханова на основании современных представлений о сильных электролитах. [c.33]

    Теория Бьеррума является приближенной, так как исходит из сферической модели ионов, не учитывает дискретной молекулярной природы растворителя, сольватации ионных пар и другие эффекты. Поэтому предпринимались попытки ее усовершенствования, в частности, Р. Фуоссом и Ч. Краусом. По мере накопления экспериментального материала появилась также необходимость ввести классификацию ионных ассоциатов, подразделив их на следующие типы а) контактные ионные пары, в которых катион и анион находятся в непосредственном контакте друг с другом б) сольватированные ионные пары, в которых катион и анион связаны друг с другом через одну молекулу растворителя в) сольватно разделенные (или рыхлые) ионные пары, в которых катион и анион удерживаются вместе электростатическими силами, но между ними имеется значительное неопределенное количество молекул растворителя г) катионные, анионные и нейтральные ионные тройники, так называемые кластерные образования типа С+А-С+, А-С+А-, А-С +А- и др. д) квадруполи, например С+А-С+А-и т. п. [c.46]


    Б. Теория образования ионных тройников и квадруполей по Фуоссу и Краусу [10] [c.58]

    Теория образования ионных тройников по Фуоссу и Краусу [c.120]

    При больших концентрациях опытные результаты передаются теорией Фуосса-Крауса. Эги авторы, развивая идею Бьеррума, полагают, что в растворителях с низкой диэлектрической постоянной часть ионов ассоциирована в виде ионных пар или более сложных агрегатов, не участвующих в процессе электропроводности. [c.276]

    Междуионное взаимодействие (и константы диссоциации) зависит от радиуса ионов. В табл. 50 указана сумма а радиусов ионов электролита, вычисленная по теории Фуосса-Крауса. [c.277]

    Чисто физическая теория Фуосса и Крауса, объясняющая аномальную проводимость образованием ионных двойников и тройников за счет куло-новского взаимодействия, была шагом вперед, но она не явилась общей теорией, так как в ней не было учтено то обстоятельство, что ассоциация ионов связана не только с кулоновским, но и с химическим взаимодействием между ионами и молекулами растворителя. [c.9]

    Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными диэлектрической проницаемостью, которая характеризует свойства растворителя, и расстоянием наибольшего сближения ионов а. Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации (ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия. Об этом говорят и сами авторы теории, особенно Фуосс. Эти авторы исследовали ассоциацию ионов полностью и не полностью замещенных аммониевых оснований и пришли к выводу, что ионы солей не полностью замещенных аммониевых оснований ассоциируют лучше, чем ионы четвертичных аммониевых оснований. Они объясняют это обстоятельство возникновением водородных связей между реагирующими ионами . Кулоновское взаимодействие дополняется некулоновским, и свойства такого ассоциата из ионов мало отличаются от свойств обычной молекулы. [c.156]


    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитро-замещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково [c.9]

    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитрозамещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково диссоциированные в воде соли по-разному ведут себя в неводных растворителях с одинаковой диэлектрической проницаемостью. Некоторые соли остаются сильными электролитами во всех растворителях. Вальден их называет сильными солями, а сила других заметно изменяется в неводных растворах—это средние и слабые соли. Установлено также, что в ряде растворителей, главным образом в спиртах, соли всех трех классов имеют близкую проводимость—это нивелирующие растворители в других растворителях (кетоны, нитрилы, нитросоединения) различные группы солей резко отличаются по своей электропроводности— это дифференцирующие растворители. [c.33]

    Совместно со своими учениками и сотрудниками Шкодиным, Александровым, Безуглым, Ивановой, Дзюбой и другими Измайлов исследовал большое число неводных растворителей и растворов электролитов на их основе им была обоснована единая шкала кислотности и показана несостоятельность других методов сравнения кислотности в различных растворителях он доказал, что поведение электролитов в различных растворителях зависит не только от их физических свойств (например, от диэлектрической проницаемости, как это вытекает из теории Фуосса и Крауса), но и от химической природы растворенного вещества и растворителя им разработана количественная теория диссоциации электролитов в растворах и предложена схема равновесий, отличная от схем, предложенных другими учеными. Главная роль по влиянию растворителя на силу электролитов отводится образованию продуктов присоединения сольватированных ионов и возможности их ассоциации. [c.140]

    Специфические особенности различных электролитов можно подробно проиллюстрировать на примерах коэффициентов активности, относительных теплосодержания и теплоемкости. Теория Дебая и Гюккеля не в состоянии объяснить различия в свойствах разных электролитов. Теория образования ионных пар Бьеррума, дополненная теорией образования ионных тройников Фуосса и Крауса (гл. УП), оказалась очень полезной для понимания свойств ионных растворов в средах с низкой диэлектрической постоянной. Однако эта теория не вносит почти ничего нового в вопрос о характере взаимодействия ионов сильных электролитов в средах с высокой диэлектрической постоянной. [c.365]

    Теория ассоциации ионов Саханова — Семенченко — Бьеррума— Фуосса — Крауса достаточно удовлетворительно объясняет образование ионных пар. Энергия электростатического притяжения противоположно заряженных ионов может значительно превосходить их тепловую энергию, что и обусловливает образование ионных пар, представляющих собой довольно стабильные новые дипольные частицы. [c.216]

    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    Краус и Фуосс разработали интересную теорию в объяснение полученных ими кривых. Как уже было упомянуто, в растворителях с низкой диэлектрической постоянной сила притяжения между ионами, имеющими заряды неодинаковых знаков, довольно значительна по сравнению с растворителями, у которых диэлектрическая постоянная высока. Отсюда следует, что ассоциация неодинаковых ионов, приводящая к образованию нейтральных молекул, намного более вероятна в углеводородных растворителях, чем вводе. Такого рода молекулы являются слабыми проводниками. По мнению Крауса и Фуосса, первоначально наблюдаемое быстрое уменьшение проводимости при низкой концентрации объясняется спариванием указанных ионов. Кривые, иллюстрирующие эту стадию, соответствуют уравнению вида >>,С 1= = постоянной величине. Затем кривые проходят через точку минимума, после чего они показывают постепенное возрастание проводимости при концентрации, превышающей указанную точку. Фуосс и Краус предполагают, что за этой точкой находится зона, в которой начинают образовываться ионные триплеты высокой проводимости. [c.203]


    Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными диэлектрической проницаемостью, которая характеризует свойства [c.128]

    В действительности при любой диэлектрической проницаемости Ig является линейной функцией от 1/е в ряду растворителей одной природы. Результаты этих исследований Фуосса и Крауса, как и наши исследования ассоциации в неводных растворителях различной природы, показывают также недостаточность теории ассоциации ионов по Бьерруму, которая учитывает только физические свойства растворителей — их диэлектрическую проницаемость и размеры ионов. [c.132]

    Своими исследованиями электропроводности Фуосс и Краус [191 подтвердили правильность теории Бьеррума и справедливость уравнения (47) гл. 1П. Исследования Фуосса и Крауса оказались особенно важными потому, что на основании их результатов была показана применимость теории междуионного притяжения к растворам в самых различных средах от воды (/) = 78,54) до диоксана 0=2,1). Для этой цели Фуосс и Краус исполь-.човали свой обширный опытный материал по электропроводности азотнокислого тетраизоамиламмония в смесях диоксан — вода. В растворе, содержащем 53% Н2О (/) = 38 при 25°), ассоциация ионов заметна, но она выражена не очень отчетливо. Поэтому можно было экстраполировать полученные данные с помощью приближенного уравнения Онзагера (8) гл. VI для определения Л и приближенной оценки К. Более точное значение К было затем получено на основании учета коэффициентов активности в нескольких разбавленных растворах. В случае смесей растворителей с диэлектрическими постоянными, равными 11,9 и 8,5 (20,2% и 14,95% П2О), А° и К вычислялись с помощью графического метода, описанного в предыдущем параграфе. Данные Фуосса и Крауса относятся к таким растворам, степень разбавления которых недостаточна для того, чтобы можно было использовать этот метод в случае сред с низкими диэлектрическими постоянными. Поэтому значения А для растворов в смесях с диэлектрической постоянной, равной 5,84 и меньше, Фуосс и Краус находили путем внесения поправок на между-ионное притяжение к приближенным значениям А , полученным с помощью правила Вальдена (4). Вычисленные таким образом значения К следует экстраполировать к нулевой концентрации, так как они возрастают с увеличением концентрации из-за образования ионных тройников. [c.189]

    Фуосс И Краус [11, 106] развили также теорию диссоциации ионных скоплений по схеме [c.60]

    Впервые ассоциация ионов была подробно рассмотрена Бьеррумом , позднее — Фуоссом и Краусом , Образование ионных пар и более крупных групп ионов приобретает очень большое значение по мере возрастания зарядов ионов и уменьшения диэлектрической проницаемости среды. Впрочем, в случае очень крупных ионов, таких, как комплексные ионы тяжелых металлов, силы межионного притяжения сравнительно невелики, поэтому даже многозарядные ионы могут укладываться в рамки теории сильных электролитов 2 . Галогениды щелочноземельных металлов ведут себя как сильные электролиты , тогда как для сульфатов щелочных металлов и нитратов щелочноземельных металлов характерна некоторая ассоциация 22, так же как и для сульфатов двухвалентных металлов [c.30]

    В настоящее время теория ассоциации ионов Саханова — Семенченко — Бьеррума — Фуосса и Крауса получила дальнейшее развитие. Доказано образование двух различных по структуре и составу ионных пар контактных К1+-Ап , представляющих собой ионные пары катионов и анионов, и сольватно-разделенных ионных пар Щ+сол Ап сол, в которых катионы и анионы разделены сольватными оболочками растворителя содержание их колеблется от О до 100% (см. гл. И). [c.38]

    Основным орудием исследования долго служила и остается до сих пор электропроводность. Первым, кто предпринял измерения в рассматриваемых системах был П. И. Вальден [475, 476]. Фундаментальные работы (более тысячи публикаций) принадлежат школе Фуосса и Крауса [48, 477]. Эти работы внесли определенный вклад в развитие теории электропроводности и служат пробным камнем для проверки теорий ионной ассоциации. [c.285]

    Весьма подробно рассмотрели вопрос об образовании ионных пар в растворе Фуосс и Краус. Ими показано, что ассоциация происходит не только в средах с низкими значениями е, но и в растворителях с любыми (в том числе и очень высокими) значениями е. Уравнения теории Фуосса — Крауса лежат в основе методов расчета констант электролитической диссоциации по кондуктометри-ческим данным (см. раздел Х.З). [c.245]

    Указанное взаимодействие протекает без образования твердой фазы и объясняется, согласно современной теории ассоциации ионов Саханова — Семенченко — Бье ррума — Фуосса — Крауса, образованием соответствующих ионных пар и тройников. [c.166]

    Как ни соблазнительна описанная выше теория ионных трип летов , все же не следует делать из нее вывода о безусловной необходимости образования детергентами такого рода ионов в углеводородных растворителях. Прежде всего необходимо отметить, что, согласно данным Мэтьюса и Гиршгорна, для объяснения возрастания проводимости такая гипотеза отнюдь не требуется. Дан ные этих исследователей не являются непосредственно сравнимым] с результатами работы Крауса и Фуосса. Далее последние приме няли для своих опытов диоксан, т. е. гидрофильный растворитель. Следует предполагать, что поведение коллоида в додекане будет совершенно иным, чем в диоксане. Слишком уже очевидно нали- [c.204]

    Заметим, что если образование ионных пар в растворах электролитов ранее предусматривалось теориями В. К. Се-мепченко, Бьеррума, Фуосса и Крауса, то возникновение ассоциатов электролита с растворителем и их роль в процессе диссоциации до работ Н. А. Измайлова не принималось во внимание, и впервые такие ассоциаты фигурируют в теории Н. А. Измайлова. [c.265]

    Следует отметить,, что Фуоос и Краус нигде не пищут, что ИХ теория основана на взглядах Саханова, однако это настолько ясно, что даже Гарнед в своей монографии Физическая химия растворов электролитов вынужден был это признать. В примечании он пишет на основании недостаточно точных чисел переноса они (Краус и Брей. — Я. И.) отверглрс соображения Саханова о том, что наличие комплексных ионов и молекул может объяснить отклонение от закона действия масс для простой диссоциации (обозначенной С). 20 лет спустя Краус и Фуосс блестяще применили эти равновесия для интерпретации кривых электропроводности солевых растворов в растворителях с низкой диэлектрической -постоянной . Здесь не все верно. Краус и Брей действительно отвергли теорию Саханова на том основании, что числа переноса (недостаточно точные) в ряде случаев мало изменяются при переходе от области нормальной проводимости в область аномальной проводимости. Однако Саханов в своей монографии Исследования в области электрохимии в 1916 году показал несостоятельность критики Крауса и Брея, которые не учли возможности одновременного образования положительных и отрицательных комплексных ионов и их участия в переносе тока, нивелирующем изменение чисел переноса. [c.54]

    Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными диэлектриче- [c.256]

    В 1957 году Фоусс и Краус в совместной работе в значительной степени отказываются от своих прежних взглядов и пишут Наконец, следует заключить, что теория ассоциации Бьеррума и метод экстраполяции Фуосса—-Шидловского должны быть заменены... . Причины этого они видят в том, что, в отличие от модели Бьеррума, в действительности  [c.589]

    Эти положения были нами высказаны еще в 1954—1956 гг. В 1957 г. Фуосс и Краус в совместной работе [5] отказались от своих прежних утверждений и пишут Наконец, следует заключить, что теория ассоциации Бьерума и метод экстраполяции Фуосса — Шидловского должны быть заменены . [c.106]

    Для проверки уравнения (80), основанного на теории ионной ассоциации, можно воспользоваться данными Фуосса и Крауса [16] по электропроводности нитрата тетраизоамиламмония в ряде смесей диоксана с водой, причем диэлектрическая постоянная этих смесей изменялась в пределах 2,2—78,6 (ср. рис- 21) при 25°. [c.224]

    Уже давно установлено, что для того, чтобы растворитель был ионизирующим, он должен обладать достаточно высокой диэлектрической проницаемостью. В растворителе с высокой диэлектрической проницаемостью заряженные частицы существуют врозь и труднее образуют ионные пары, а также более высокоагрегирован-ные ионные частицы, которые не участвуют в механизме электропроводности. Поэтому данные но электропроводности нельзя правильно интерпретировать, если не учесть диэлектрическую проницаемость растворителя (или более точно — диэлектрическую проницаемость раствора). Теория Дебая — Хюккеля, в дальнейшем развитая Онзагером, а затем Фуоссом и Краусом, позволила объяснить процессы, протекающие в растворах с низкой электропроводностью и, следовательно, с низкой диэлектрической проницаемостью. Известно также, что скорости и механизмы различных типов реакций зависят от диэлектрической проницаемости среды. Но, с другой стороны, диэлектрической проницаемости часто придавали слишком большое значение. В некоторых современных книгах представ- [c.13]

    Чисто физическая теория ассоциации ионов Семенченко — Бьеррума, дополненная Фуоссом и Краусом, объяснила аномальную проводимость за счет кулоновското нзаимощействия, но она не стала общей теорией, так ак не учитывала, что ассоциация ионов связана не только с кулоновским, но и с химическим взаимодействием между ионами и молекулами растворителя. Для создания единой теории сильных и слабых электролитов необходимо рассматривать поведение ионов и молекул в растворах электролитов во взаимодействии, учитывая реальные условия и среду. [c.127]


Смотреть страницы где упоминается термин Теория Фуосса и Крауса : [c.127]    [c.126]    [c.613]    [c.71]    [c.506]    [c.18]   
Физическая химия растворов электролитов (1950) -- [ c.0 ]

Физическая химия растворов электролитов (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Теория образования ионных тройников и квадруполей по Фуоссу и Краусу

Теория образования ионных тройников по Фуоссу и Краусу

Фуосс



© 2025 chem21.info Реклама на сайте