Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория ассоциации ионов функции

    В действительности при любой диэлектрической проницаемости Ig является линейной функцией от 1/е в ряду растворителей одной природы. Результаты этих исследований Фуосса и Крауса, как и наши исследования ассоциации в неводных растворителях различной природы, показывают также недостаточность теории ассоциации ионов по Бьерруму, которая учитывает только физические свойства растворителей — их диэлектрическую проницаемость и размеры ионов. [c.132]


    В настоящей 1 лаве будет развита полная теория термодинамических свойств разбавленных ионных растворов путем сочетания теоретических уравнений, полученных для случая равновесия (гл. II, 8 4) с термодинамическими зависимостями, приведенными в гл. I, а также путем дальнейшего обобщения полученных результатов. Будут выведены предельные законы зависимости коэффициента активности, осмотического коэффициента, относительного парциального молярного теплосодержания, теплоемкости, расширяемости и сжимаемости от концентрации. Теория будет распространена на тот случай, когда учитывается влияние конечных размеров ионов. Дальнейшее расширение теории будет заключаться в устранении приближенного характера математической трактовки, которая была обусловлена отбрасыванием ч,ленов высших порядков при разложении в ряд экспоненциальной функции в уравнении (18) гл. II кроме того, будет рассмотрена также теория, учитывающая влияние ассоциации ионов. В сжатой форме будет изложена теория влияния электростатических сил на поверхностное натяжение раствора. Наконец будет рассмотрена теория влияния распадающихся на ионы солей на растворимость нейтральных молекул. [c.46]

    Q(b) - функция в теории ионной ассоциации Бьеррума [c.16]

    Для описания ассоциации с противоионами используют различные теоретические подходы. Харрис и Раис [258] рассматривают модель цепи с заряженными фрагментами с помощью распределения Пуассона— Больцмана (1.56) в приближении Дебая — Хкжкеля и дополняют теорию ассоциацией ионов. Они представляют Kass в виде функции распределения ячеек вдоль линии одного измерения на центрах с фиксированным зарядом с соответствующим термом обмена - энтропией для распределения ионных пар —СО М +, свободных ионов —СОТ" и ионизуемых центров. Предполагается, что решение нелинеаризованного уравнения (1.56) в численном виде, которое можно получить для моделирующего полиион в присутствии избытка электролита жесткого цилиндра, объяснит и эффект ассоциации с противоионами, и эффект ионной атмосферы [9, 318]. В работах [353, 354] рассмотрены Другие теоретические подходы. [c.540]

    Q (й)—функция в теории образования иопиых пар [уравнение (.54) гл. III и табл. 0]. у—функция в теории ассоциации ионов [уравиепие (48) гл. III]. [c.11]

    Типичным npHivfepoM является применение теории Дебая — Хюккеля к концентрированным растворам электролитов, а в области электродных процессов — применение теории Гуи — Чэпмена к двойному слою. В обоих случаях теории становятся полностью несправедливыми при переходе к концентрированным растворам. Действительно, в этих теориях не учитывается диэлектрическое насыщение вблизи иона, которое неизбежно приводит к изменениям теплоты гидратации (и, возможно, к ассоциации ионов), когда ионы подходят близко друг к другу или к поверхности электрода. Функция распределения должна быть изменена с учетом этого явления. Важная работа Штрелова и Бродовски [111 ясно показывает порядок величины ошибки, связанной с пренебрежением конечным объемом ионов в обычно используемой функции распределения. Таким образом, хотя диффузный двойной слой успешно используется для целей диагностики [121, все же, пока не создана более точная теория двойного слоя для концентрированных растворов, остается спорным вопрос о количественном учете влияния этого слоя на кажущиеся константы скорости и на диффузионный импеданс в случае быстрых окислительно- [c.64]


    Не вызывает сомнения тот факт, что в большом классе тройных водно-электролитных систем, в кото шх отсутствуют сложные процессы комплексообразования, гидролиза или какого-либо другого рода ассоциации ионов электролитов, большую роль играет характер распределения воды между ксшпонентами и ее перераспределение при изменении условий (и прежде всего концентрации и температуры). Такие свойства, например, как некоторые термодинамические функции (энтальпии растворения, разбавления, смешения в тройных растворах, энтропийные характеристики), вязкость тройных растворов, не говоря уже о растворимости, - во многом определяются состоянием вода и перераспределением ее по сферам влияния отдельных электролитов. Поэтому решение вопроса о расчете распределения воды между электролитами в водных растворах во многом облегчил бы понимание сущности процессов в этих сложньк системах. Некоторые авторы ставят задачм такого рода, в вязи е этим прежде всего следует отметить работы школы 0.Я. Самойлова [1-3 , в которых успешно развивается молекулярно-кинетическая теория высаливания. Авторы пытались выяснить молекулярный механизм изменения ближней гидрат ии высаливаемого иона и связь ее с характеристиками высаливателя. Однако переход к количественной интерпретации привел авторов к необходимости введения сложных функций разделения [4-бЗ, при этом, на нам взгляд, утратился ранее достаточно ясный физический смысл явлений. Вопросу перераспределения воды в тройных растворах посвящен ряд работ В.И.Ахумова [7-8].  [c.66]

    Дальнейшее развитие теоретических подходов к описанию концентрационной зависимости электропроводности растворов электролитов с использованием представлений теории Фуосса-Онзагера, парных корреляционных функций, полученных на основе уравнения сверхразветвлен-ных цепей и среднесферического приближения, осуществлено в работах [34—36]. В отличие от работ Эббелинга с соавт. [29-31] было учтено различие в радиусах ионов, включены члены более высокого порядка в теории Фуосса-Онзагера, вклад от релаксационного эффекта рассчитан другим путем, ионная ассоциация рассмотрена в рамках "химической" модели [37]. Вид полученных уравнений достаточно сложный и заинтересованный читатель может найти их в оригинальных статьях. [c.100]

    И. Хабер (Краков, ПНР). Авторы доклада 12 обсуждают различия в прочности Ч5ВЯЗИ кислород — Сг + в шпинели и твердом растворе в свете представлений теории кристаллического поля. Однако, чтобы наблюдать какую-либо разницу в величинах энергий стабилизации кристаллического поля, необходимо, чтобы дырка, образующаяся во время хемосорбции, была локализована в твердом растворе и делокализована в шпинели. Мне кажется, что энергия образования ассоциации с дефектом слишком мала, чтобы при сравнительно высоких температурах, применяемых авторами, быть ответственной за наблюдаемые различия. Необходимо также обратить внимание на тот факт, что весьма опасно сравнивать поведение ионов хрома в шпинели и в твердых растворах с MgO, исходя только из представлений о симметрии и взаимодействии Сг — Сг, так как кристаллические решетки этих веществ различны и отличаются поэтому по энергиям и другим свойствам, которые являются функциями характера решетки. Кроме того, следует указать на то, что шпинель — это дефектная структура и растворение MgO в шпинели, соответственно, повышает концентрацию вакансий хрома. Эти дефекты могут значительно влиять на хемосорбционные свойства указанных катализаторов. [c.208]


Смотреть страницы где упоминается термин Теория ассоциации ионов функции: [c.11]    [c.125]    [c.217]    [c.38]    [c.46]    [c.53]    [c.494]    [c.494]    [c.163]    [c.473]    [c.18]    [c.118]   
Физическая химия растворов электролитов (1950) -- [ c.125 , c.126 ]

Физическая химия растворов электролитов (1952) -- [ c.125 , c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация ионов

Теория ассоциации

Теория ассоциации ионов функция lgQ таблица

Функции теории ассоциации ионов Бьеррум



© 2025 chem21.info Реклама на сайте