Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы переходные энергетических уровней

    У ионов и Са" 4у-орбиталь чуть более устойчива, чем З -орбита-ли, и поэтому присоединяемые к ним электроны поступают на 4х-орби-таль. В отличие от этого у иона 8с энергетический уровень З -орбитали располагается ниже уровня 4. -орбитали, и у ионов переходных металлов с более высокими порядковыми номерами дело обстоит таким же образом. Единственный внешний электрон у иона 8с" находится на З -орби-тали, а не на 4, -орбитали. Таким свойством обладают и все остальные переходные металлы. Перепутывание энергетических уровней 5- и -орби-талей происходит в начале каждого ряда переходных металлов. Хотя у элементов групп 1А и ПА сначала заполняется электронами внешняя орбиталь, у ионов переходных металлов электроны занимают -орбитали. Например, ион Т1" имеет валентную конфигурацию 3 ", а не 4 ". [c.438]


    Электронная конфигурация (п— )d °ns . Так как внешний энергетический уровень содержит два s-электрона, поэтому они сходны с элементами подгруппы ПА. Предпоследний энергетический уровень содержит 18 электронов. Этим они отличаются от элементов подгруппы ИА, в предпоследнем уровне которых 8 электронов (s p ). Если в подгруппе меди подуровень (л—l)d еше не стабилен, то в подгруппе цинка он вполне стабилен, и с1-электроны у элементов подгруппы цинка не принимают участия в химических связях. Ковалентность этих элементов 2, степень окисления +2 (у ртути бывает н +1). По многим свойствам эти элементы-тяготеют к побочным (переходным) элементам, однако их сходство с главными [c.450]

    Так, например, первоначальный пятикратно вырожденный -уровень в центральном ионе переходного элемента при образовании октаэдрических комплексов расщепляется на два подуровня с более высоким значением энергии (обозначается е ) и три подуровня с более низким значением энергии (обозначается 2 ). Расщепление вырожденного энергетического уровня в октаэдрическом поле лигандов приведено на рис. 11. Расстояние между расщепленными уровнями, равное разности между энергиями у и -орбиталей, назы- [c.47]

    Во многих случаях уровень термоупругих напряжений в элементах конструкций является решающим для оценки их прочности и ресурса. Эта ситуация характерна для современных энергетических установок с ВВЭР, условия эксплуатации которых определяются длительным пребыванием деталей конструкций при высоких температурах, многократными циклами нагрев—охлаждение, значительными скоростями изменения температуры в переходных режимах и т л. [c.78]

    В принципе следует ожидать протекания этого процесса и для переходных металлов, но, поскольку их -электроны плохо экранированы от внешних влияний, наблюдается сильное тушение люминесценции. В других случаях (это относится и к 4/-уровням некоторых редкоземельных элементов) имеются очень низколежащие -уровни и испускание происходит в инфракрасной области (если вообще происходит). В результате многие комплексы переходных металлов, даже те, которые образуются из флуоресцирующих реагентов, являются слабо флуоресцирующими или не флуоресцируют вовсе. Однако некоторые из них все же дают линию испускания, например хелат хрома с оксином, который в твердой среде при 80 К испускает при 1,32 МКМ (см. табл. 50). Напротив, 4/-уровни редкоземельных элементов хорошо экранированы от внешних влияний. Следствием этого является, во-первых, то обстоятельство, что люминесценция, соответствующая переходам а->а, тушится не очень легко. Во-вторых, она во многом сохраняет природу атомного испускания и, таким образом, состоит из узкой линии. Наконец, испускание может происходить с уровней а, более высоких, чем йи и заканчиваться на уровнях более высоких, чем основное состояние. Следовательно, один редкоземельный элемент может давать несколько линий испускания. Если /-уровни так хорошо защищены от внешних воздействий, возникает вопрос, почему они могут быть заселены интеркомбинационной конверсией с л — я- или я — п-уровней. По-видимому, причина состоит в том, что вероятность такой интеркомбинационной конверсии действительно мала. Так, процесс 51->а, по-видимому, не может конкурировать с 51->Г1 или 51->5о, если энергетические уровни расположены, как в случае Б на рис. 180. С другой стороны, процесс Т ->а происходит, по-видимому, потому, что излучательное время жизни состояния Т много больше, чем состояния 5ь Так, Кросби и сотр. [392] нашли, что хелат диспрозия с бензоилацетоном имеет линейчатое испускание (что соответствует случаю В на рис. 180), а хелат диспрозия с дибензоил-метаном — испускание, соответствующее я-электронной полосе Б на рис. 180). Если уровень редкоземельного элемента лежит выше я — я- или я — п-синглетного уровня, имеется некоторая вероятность интеркомбинационной конверсии в противоположном направлении. Так, при возбуждении салицилата гадолиния светом 313 нм его сине-фиолетовая флуоресценция заметно усиливалась в результате поглощения света гадолинием (т. е. перехода а< а) [393]. [c.457]


    Испускание излучения определенных длин волн объясняется электронной структурой атомов излучающего элемента. В процессе возбуждения планетарному электрону сообщается достаточное количество энергии, чтобы поднять его с нормальной орбиты или энергетического уровня на более высокий. Когда электрон перескакивает на свой нормальный уровень, он испускает квант лучистой энергии соответствующей величины. Атомам различных элементов отвечают специфичные им энергетические уровни, и так как длина волны излучения определяется энергией кванта, то длины волн, характерные для любого данного элемента, будут всегда одни и те же. Многообразие линий в спектре более тяжелых переходных металлов объясняется большим числом различных энергетических уровней. Каждый атом в данный момент может испускать излучение только одной длины волны, но так как любой образец представляет собой совокупность огромного числа атомов, то в спектре появляются линии всех возможных длин волн. Математическая обработка здесь довольно сложна и не имеет непосредственного отношения к применению в аналитической химии. [c.129]

    Степень поляризации аниона под воздействием катиона определяется не только ионным потенциалом катиона, но и тем, каков его самый внешний занятый электронами энергетический уровень. Для одного и того же энергетического уровня распределение -электронов оказывается более диффузным, чем распределения 5- и р-электронов. Другими словами, -электроны проводят в среднем больше времени в удалении от ядра, чем. 9- или р-электроны. По этой причине катионы с -электронами на внешнем энергетическом уровне оказываются более мягкими и сильнее взаимодействуют с анионами. К числу таких ионов с -электронами на внешнем энергетическом уровне относятся катионы большинства переходных металлов и непосредственно следующих за ними (постпереходных) элементов соответствующих периодов. Принято говорить, что они обладают большой поляризующей способностью. [c.131]

    Нет сомнения, что существует вторая группа внутрирядных переходных элементов, в которых заполняется 5/-подуровень, однако неясно, где действительно начинается этот ряд, где появляются 5/-электроны. Трудность отнесения электрона к определенному подуровню атома для элементов, стоящих после актиния, заключается в близости величин энергии для 5/- и 6 -состоя-ний. Энергии, выделяющейся при образовании химической связи, достаточно для перехода электрона с одного на другой энергетический уровень. Первый 5/-электрон должен был бы появиться у атома тория. Однако многие свойства этого элемента указывают на то, что его следовало бы поставить в подгруппу IV-A под гафнием, а не в III-А под церием. Протактиний и уран по их свойствам тоже больше подходят к подгруппам IV-A и VI-A, нежели к празеодиму и неодиму. Однако сейчас есть обстоятельные спектроскопические и химические доказательства, подтверждающие мнение, что элементы, стоящие после актиния, образуют второй редкоземельный ряд и что 5/-электроны впервые появляются у протактиния. [c.102]

    Нет сомнения, что существует вторая группа внутрирядных переходных элементов, в которых заполняется 5/-подуровень, однако неясно, где действительно начинается этот ряд, где появляются 5/-электроны. Трудность отнесения электрона к определенному подуровню атома для элементов, стоящих после актиния, заключается в близости величин энергии для 5f- и 6 -состояний. Энергии, выделяющейся при образовании химической связи, достаточно для перехода электрона с одного на другой энергетический уровень. Первый /-электрон должен был бы появиться у атома тория. Однако многие свойства этого элемента указывают на то, что его следовало бы поставить в подгруппу IV А под гафнием, а не в III А под церием. Протактиний и уран по их свойствам тоже больще подходят к подгруппам V Л и VI Л, нежели к празеодиму и неодиму. Однако сейчас есть обстоятельные спектроскопические и химические доказательства, подтверждающие мнение, что элементы, стоящие после актиния, образуют второй редкоземельный ряд и что 5/-электроны впервые появляются у протактиния. Несомненно, что у атомов этого ряда элементов, как и других переходных рядов, относительная энергия заполняемого уровня становится меньше по мере последовательного прибавления электронов. Уже для нептуния, плутония и следующих элементов энергия 5/-подуровня становится ниже, чем энергия подуровня 6d. [c.102]

    Комплексообразование у переходных элементов. Явное стремление к образованию прочных комплексов наблюдается у многих переходных элементов (см. стр. 352). Как угфзывает Полинг, это можно обосновать квантово-механически. У ионов переходных элямёнтов существуют неполностью занятые -уровни. Электроны на этих неполностью занятых ( -уровнях очень часто частично или даже полностью не спарены. Например, ион Сг содержит три, ион Мп пять, ион.Ре2 (помимо двух спаренных) четыре неспаренных -электрона. Под влиянием окружающих лигандов электроны таких ионов могут спариваться, причем освобождается большее или меньшее число первоначально занятых -уровней. Так как эти -уровни лежат лишь немного ниже х-и /1-уровней следующих оболочек, из этих -, р- и -уровней может происходить образование новых общих уровней, способных заполняться электронами лигандов. Расход, энергии, затрачиваемый на спаривание первоначально неспаренных электронов, покрывается за счет энергии резонанса при гибридизации уровней. Электроны, обусловливающие атомную связь, принадлежат лигандам. Центральный атом представляет для этих электронов лишь свои вакантные энергетические уровни или образовавшиеся из них промежуточные, гНбридизованные уровни. Например, в ионе Со имеется два спаренных и четыре неспаренных 3 -электрона. При их спаривании освобождаются два 3 -уровня, образующих вместе с4 -уровнем и тремя 4/1-уровнями промежуточный уровень, на котором могут разместиться 2 х 6=12 электронов. Эти места могут быть заняты 6 молекулами аммиака, каждая из которых предоставляет одну электронную пару для образования атомной связи [c.444]



Современная неорганическая химия Часть 3 (1969) -- [ c.3 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Уровни энергетические

Элементы переходные



© 2025 chem21.info Реклама на сайте