Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры линейчатые испускания

    Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 7). Возникновение линий в спектре обусловлено тем, что при возбуждении атомов (нагревании газа, электроразряде и пр.) электроны, принимая соответствующие [c.14]

    М Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 6). Возникно- [c.15]


    Отсутствие флуоресценции у некоторых анионов, таких, как нитрат-анион, также обусловлено фоторазложением. В окрашенных комплексах некоторых переходных элементов поглощенная энергия деградирует через более низкие возбужденные состояния, возникновение которых обусловлено наличием частично заполненных -орбиталей. Редкоземельные элементы имеют частично незаполненную 4/-оболочку, и электроны, находящиеся на 4/-уровнях, поглощая свет, могут перейти на незаполненные 4/-уровни. Эти уровни хорошо экранированы от внешних влияний наиболее удаленными от ядра электронами, занимающими в трехвалентных ионах орбитали 5з и 5р. Поэтому безызлучательная дезактивация мала, и в кристаллофосфорах все редкоземельные элементы, содержащие от 2 до 12/-электронов, а именно Рг, N(1, 8т, Ей, Сс1, ТЬ, Оу, Но, Ег, Ти, дают линейчатое испускание. Считают, что в жидких растворах линейчатое испускание ограничено пятью ионами элементов середины ряда, а именно самария, европия, гадолиния, тербия и диспрозия [126]. Спектры поглощения редкоземельных элементов сложны, и испускание может происходить с нескольких энергетических уровней. Простые соли (например, хлориды, сульфаты) пяти ионов, которые люминесцируют в растворе, дают линейчатое поглощение, мало интенсивное в водной среде, и при низких концентрациях эти вещества трудно возбуждаются. Хлорид тербия можно возбудить линией ртути 366 нм (уширенной давлением), и с помощью чувствительного спектрофлуориметра обнаружить концентрации вплоть до 10" М. Хлориды самария, европия и диспрозия этой группой длин волн возбуждаются менее интенсивно (рис. 177 и табл. 52 в разделе V, Ж). При возбуждении более коротковолновым светом растворы хлорида гадолиния дают линейчатое испускание при 310 нм (рис. 177). Интенсивность по- [c.448]

    Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь иа положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомны.х спектров, ои сделал вывод, что энергия >лектронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, разрешенные состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. [c.66]

    При а-распаде ядро атома изотопа материнского элемента переходит в ядро атома изотопа дочернего элемента, стоящего в периодической системе на две клетки влево от материнского элемента. Если переход совершается на возбужденный уровень энергии ядра изотопа дочернего элемента, то за излучением а-частицы следует испускание одного или нескольких фотонов с энергией, в сумме равной разности уровней энергии возбужденного и невозбужденного ядер. а-Частицы, испускаемые при распаде ядер материнского изотопа, вследствие перехода на дискретные уровни энергии ядра дочернего элемента имеют дискретный (линейчатый) спектр по энергии. [c.319]


    Другой интересный и полезный процесс внутримолекулярного переноса энергии происходит в редкоземельных хелатах. Стабильные комплексы трехвалентных ионов от лантана до лютеция (за исключением церия) все имеют очень близкие свойства, включая спектры поглощения, которые для данного лиганда фактически идентичны. Однако их спектры испускания сложны и содержат как молекулярную флуоресценцию, так и линейчатое испускание, характерное для ионов лантаноидов. Эти спектры от иона к иону значительно отличаются по характеру и полному выходу люминесценции (примерно от единицы до Ю ) таким образом можно получить весьма полезную информацию о миграции энергии в сложных молекулах и об энергии резонансных уровней самих ионов. [c.284]

    Распад молекулы только в результате увеличения ее вращательной энер-гии установлен для HgH. В линейчато-полосатом спектре испускания НеН, [c.81]

    Для измерения сигнала абсорбции необходим внешний источник излучения. Как уже отмечено выше, лучше всего для этой цели подходит источник линейчатого спектра. В качестве такого источника применяют разрядные трубки или лампы с полым катодом и безэлектродные лампы с высокочастотным возбуждением, характеризующиеся узкими линиями испускания [c.154]

    Прибор имеет два источника излучения лампу накаливания, дающую сплошной спектр испускания в видимой области, и ртутно-кварцевую лампу, дающую линейчатый спектр испускания в УФ- и видимой областях спектра. [c.74]

    Эмиссионный спектральный анализ основан на изучении эмиссионных спектров (спектра испускания или излучения). Каждому химическому элементу свойственен свой индивидуальный линейчатый спектр испускания, состоящий из ряда линий с определенными длинами волн. Наличие в спектре излучения этих линий дает возможность судить о наличии искомых элементов в исследуемом образце. Сначала наблюдают их в спектре анализируемого вещества, затем по имеющимся атласам и таблицам спектральных линий определяют принадлежность этих линий тем или иным элементам, что и позволяет устанавливать присутствие последних (качественный спектральный анализ). [c.181]

    Планетарная модель строения атома оказалась неспособной объяснить линейчатый спектр испускания атомов водорода и тем более объединение линий спектра в серии. Как было указано выше, электрон, вращаюш,ийся вокруг ядра, должен приближаться к ядру, непрерывно меняя скорость своего движения. Частота испускаемого им света определяется частотой его вращения и, следовательно, должна непрерывно меняться. Это означает, что спектр излучения атома должен быть непрерывным, сплошным. Согласно данной модели частота излучения атома должна равняться механической частоте колебаний (i/q) или быть кратной ей  [c.41]

    Всякое тело способно излучать (и, следовательно, поглощать) электромагнитные излучения определенных частот. Мы знаем, что спектр газа линейчат — это означает, что газ испускает дискретный набор частот. Конденсированные тела имеют сплошные спектры поглощения (и, следовательно, испускания). [c.234]

    В качестве источников света в приборе используют две лампы лампу накаливания, дающую сплошной спектр испускания в видимой области ртутно-кварцевую лампу, дающую линейчатый спектр испускания в ультрафиолетовой и видимой областях. В качестве монохроматоров служат светофильтры с узкими полосами пропускания 30— 40 нм. Прибор может быть использован как упрощенный спектрофотометр при изучении спектров систем, обладающих широкими полосами поглощения, для измерений в области 300—700 нм. Максимумы пропускания большинства светофильтров практически совпадают с рядом линий в эмиссионном спектре ртути (табл. 18). Поэтому с ртутно-кварцевой лампой можно производить измерения в ультрафиолетовой и видимой областях спектра с очень узкими монохроматическими пучками при следующих длинах волн (нм) 577,9 546 436 405,8 365 313. [c.250]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]


    Особенности движения в изолированных атомах и в молекулах выражаются в структуре их спектров. Для атомов характерны линейчатые спектры (рис. А,а). Они содержат относительно небольшое число отдельных, четко отграниченных друг от друга линий с определенным положением (частотой) и яркостью. Атомные спектры испускания возникают вследствие перехода электронов с возбужденных уровней [c.42]

    Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 7). Возникновение линий в спектре обусловлено тем, что при возбуждении атомов (нагревании газа, электроразряде и пр.) электроны, принимая соответствующие порции энергии, переходят в состояние с более высокими энергетическими уровнями. В таком возбужденном состоянии томы находятся лишь ничтожные доли секунды. Переход электронов в состоянии с более низкими энергетическими уровнями сопровождается выделением кванта энергии. Это Отвечает появлению в спектре отдельных линий. [c.22]

    Наибольшая. монохроматичность пучка при максимальном световом потоке достигается в том случае, когда ширина выходной щели равна геометрическому изображению входной. В частности, при увеличении монохроматора, равном единице, ширина обеих щелей должна быть одинаковой. При работе с линейчатым спектром испускания через выходную щель пропускают весь световой поток, составляющий одну спектральную линию, и выходную щель устанавливают более широкой, чем входную. [c.145]

Рис. 2.1. Непрерывный спектр (а) и спектр испускания (линейчатый спектр) (6) Рис. 2.1. <a href="/info/50440">Непрерывный спектр</a> (а) и <a href="/info/2750">спектр испускания</a> (линейчатый спектр) (6)
    УФ-детектор с диодной матрицей. Как уже отмечалось выше, в УФ-детекторах широко распространенных типов используют прохождение через кюветы (как образца, так и сравнительной) монохроматического света. В УФ-детекторе с фильтрами такой свет из линейчатого спектра испускания ртутной лампы вырезается фильтром, а в спектрофотометре — вырезается из широкого спектра испускания дейтериевой лампы с использованием дифракционной решетки. Только в сканирующем спектрофотометре (например, с прыгающим зеркалом, используемым в Милихроме ) кювета освещается последовательно несколькими монохроматическими лучами света. [c.157]

    Примерно такие же процессы разыгрываются в органических соединениях некоторых редкоземельных ионов, например в трис-дибензоилметиде европия. Их щирокие спектры поглощения обусловлены органическими лигандами. Часть энергии возбуждения передается одному из 4/-электронов центрального редкоземельного атома, и он переходит на более высокую незаполненную 4/-орбиталь. У многих редких земель эта энергия теряется в безызлучательных процессах, однако у европия, тербия, диспрозия и самария наблюдается линейчатое испускание, обусловленное одним или несколькими переходами типа 4/ 4/т- Это явление обычно называют внутримолекулярным переносом энергии, однако его можно также рассматривать как разновидность интеркомбинационнои конверсии из состояния я (низщее триплетное состояние) в одно из атомных состояний . Этот процесс подробно рассматривается в разделе V, Д, 3. [c.88]

    АТОМНЫЕ СПЕКТРЫ ИСПУСКАНИЯ. При нагревании до достаточно-высокой температуры элемент начинает испускать свет. Если испускаемый свет пропустить через призму, то выходящий свет обычно не дает непрерывного спектра (например, типа радуги). Вместо этого наблюдаются вполне дискретные цветные линии ( линейчатый спектр ), соответствующие характеристическим длинам волн. Для того чтобы объяснить это явление, Нильс Бор, ученик Резерфорда, сконструировал модель атома, в которой электрон движется по круговым орбитам вокруг ядра. По Бору, число этих орбит ограниченно, и они соответствуют определенным уровням энергии ( квантовым уровням ). Иными словами, электронам запрещено существование вне этих орбиталей, и об их энергии говорят, что она квантована.. Перемещение электрона с орбиты с низкой энергией на орбиту с высокой энергией требует поглощения определенного количества ( кванта ) энергии. При переходе электрона с высокоэнергетической орбиты на низкоэнергетическую излучается точно определенный квант энергии. Последняя особенность служит причиной появления ярких спектральных линий. [c.15]

    Атомные спектры, оптич. спектры, получающиеся при испускании или поглощении электромагн. излучения свободными или слабо связанными атомами (напр., в газах или парах). Являются линейчатыми, т.е. состоят из отдельных спектральных линий, характеризуемых частотой излучения V, к-рая соответствует квантовому переходу между уровнями энергии Ei и Ек атома согласно соотношению hv=Ei Ek, где й-постоянная Планка. Спектральные линии можно характеризовать также длиной волны X = /v (с-скорость света), волновым числом l/X = v/ и энергией фотона /IV. Частоты спектральных линий выражают вс, длины волн-в нм и мкм, а также в А, волновые числа-в M , энергии фотонов-в эВ. Типичные A. . наблюдаются в видимой, УФ- и ближней ИК-областях спектра. Спектры испускания, или эмиссионные, получают при возбуждении атомов разл. способами (фотонами, электронным ударом и т.д.), спектры поглощения, или абсорбционные,-при прохождении электромагн. излучения, обладающего непрерывным спектром, через атомарные газы или пары. Для наблюдения A. . применяют приборы с фотографич. или фотоэлектрич. регистрацией. [c.218]

    Колебательные спектры молекул в чистом виде практически не встречаются, так как колебания ядер молекулы обычно сопровождаются ее вращением. Наложение малых вращательных возбуждений на колебательные движения приводит к линейчато-полосатой структуре инфракрасных спектров поглощения и испускания. [c.664]

    АТОМНЫЕ СПЕКТРЫ, совокупность длин волн (частот, волновых чисел) электромагн. излучения в УФ, видимой и ИК областях, поглощаемого или испускаемого при квантовых переходах между уровнями энергии свободных или слабо взаимодействующих атомов или атомных ионов. Соотв. различают А. с. поглощения (абсорбционные) и испускания (эмиссионные). При фоторегистрации каждой длине волны соответствует своя линия на пластинке. А. с. состоят из отд. линий, поэтому КХ иногда наз. линейчатыми (много-линейчатыми) п отличие от полосатых молекулярных спектров. Наиб, простой спектр у атома Н, линии к-рого образуют серии их положение описывается выражением [c.59]

Рис. 2.4. К происхож- нижении энергии электрона энергия выделяется. Из-дению линейчатых менение энергии равно Д = Е - Е = и = спектров поглощения = Ез — Е = Нр2- Так как Д 2 > Д-Бь то Р2 > 1- Ча-и испускания. стота излучения связана с энергией, поглощенной или Рис. 2.4. К происхож- нижении <a href="/info/3620">энергии электрона энергия</a> выделяется. Из-дению линейчатых менение энергии равно Д = Е - Е = и = <a href="/info/2753">спектров поглощения</a> = Ез — Е = Нр2- Так как Д 2 > Д-Бь то Р2 > 1- Ча-и испускания. стота излучения связана с энергией, поглощенной или
    С помощью данного метода определяют наличие химических элементов, простых ионов, радикалов (например, СЫ), простейших молекул (чаще всего — двух- или -фехатомных), регистрируя их спектры испускания (эмиссию). Свечение (испускание света) вещества возбуждают в пламени горелки, в электрической дуге или искре, в газоразрядной трубке (электрический разряд) и т. д. При этом получают линейчатые, т. е. состоящие из линий (атомы), или (реже) полосатые, т. е. состоящие из полос, образующихся при наложении многих линий (молекулы, ионы и радикалы, состоящие из нескольких атомов), спектры испускания, которые идентифицируют (отождествляк>т) с помощью таблиц, атласов спектральных линий или эталонов. [c.518]

    Для атомов характерны именно линейчатые спектры, причем каждый атом характеризуется своим набором линий, соответствующим набору энергетических уровней (набору термов), свойственных данному атому. Исследуя спектры испускания, можно определить элементный состав веществ. Для этого нагревают исследуемый образец вещества до такой температуры, чтобы вещество разложилось на атомы, фотографируют или записывают каким-либо способом испускаемый спектр частот и сравнивают его с набором описанных в справочниках линейчатых спектров элементов. Это делается с помощью специальных приборов — пламенных фотометров, которые сейчас х успехом применяются вместо трудоемких химических процедур качественного анализа элементного состава веществ. [c.151]

    Источником рентгеновского излучения, используемым в рентгенофазовом и рентгеноструктурном анализе, обычно является рентгеновская трубка. В рентгеновской трубке поток электронов, испускаемый вольфрамовой спиралью (катодом), ускоряется из-за большой разности потенциалов между к атодом и анодом (несколько десятков киловольт, кВ) и ударяется об анод. При этом происходят два основных процесса - торможениа электронов (с одновременным возбуждением тепловых колебаний, т.е, нагревом анода и испусканием рентгеновских квантов, дающих сплошной спектр) и ионизация атомов (удаление электронов с внутренних и внешних электронных оболочек атомов). За счет последующих электронных переходов происходит излучение рентгеновских квантов, дающих линейчатый, или характеристический спектр, вид которого определяется материалом анода. [c.6]

    Один из первых случаев обнаружения индуцированной предиссоциации касается особенностей спектра поглощения молекулы 1г для перехода (рис. 3.1). При очень низких давлениях поглощение в линейчатой области ниже диссоциацион-ного континуума сопровождается соответствующим спектром флуоресценции. Существует, однако, пересекающее состояние Ш электронное состояние, для которого безызлучательные переходы обычно запрещены, и добавление постороннего газа (Аг при давлении около 30 мм рт. ст.) приводит к ослаблению полос испускания, расположенных выше предиссоциационного предела. В самом деле, продукт предиссоциации — атомарный иод — детектируется (по атомным линиям поглощения) при тех же условиях, когда исчезают полосы испускания. Увеличение интенсивности соответствующих полос поглощения также наблюдается при добавлении постороннего газа, и нет сомнений, что этот эффект — результат индуцированной предиссоциации, Предиссоциация приводит к образованию двух атомов в основном состоянии и наблюдается для других галогенов так же, как и для г, при длинах волн, обеспечивающих достаточную энергию для разрыва цепи. Так, при фотоброми-ровании этилена квантовый выход первой стадии [c.55]

    Если источником света является разрядная трубка, содержащая некоторый элемент в газообразном состоянии, то возникает спектр, состоящий из линий различного цвета на черном фоне. Такой спектр называют атомным спектром испускания (эмиссии) или линейчатым спектром (рис. 2.1,6). Спектры испускания можно получить для любого вещества, если тем или иным способом возбудить его, например, с помощью электрического разряда или нагревая вещество в пламени. Атомные спектры испускания лежат в видимой и ультрафиолетовой областях спектра. Если внести в пламя горелки натрий или его соединение, то излучается свет с длиной волны 590 нм, и пламя окращи-вается в желтый цвет. У водорода, помещенного в трубку и возбуждаемого с помощью электрического разряда, цвет свечения красновато-розовый. [c.36]

    Определение примесей химических элементов в радиофар-мацевтических препаратах осуществляют методом эмиссионного спектрального анализа по спектрам испускания. Анализ предполагает сжигание пробы испытуемого вещества в газовом пламени, электрической дуге или электрической высоковольтной искре. При этом происходят испарение исследуемого вещества и его диссоциация на атомы и ионы, которые возбуждаются и испускают свет. Излучение источника света складывается из излучения возбужденных атомов всех элементов, присутствующих в пробе. Атомы каждого элемента испускают кванты света только определенных длин волн (так называемое характеристическое излучение), выделяемых посредством спектральных приборов, в которых происходит разложение света, испускаемого источником, в линейчатый спектр. [c.322]

    Из фнлики известно, что спектр испускания бывает сплошной, линейчатый и полосатый. [c.89]

    Кроме спектров испускания различают есце спектры поглощения, которые также могут быть сплошными, линейчатыми пли полосатыми. [c.90]

    Заслуживают внимания свойства радикалов, связанные с поглощением и испусканием света. Вследствие взаимодействия неспаренного электрона с системой всех остальных связей в радикале по сравнению с соответствуюш,ими молекулами изменяются электронные энергетические уровни, а следовательно, смещаются и области поглощения. У большинства известных стабильных радикалов обнаруживается сильное поглощение в видимой области, поэтому для них удобны колориметрические методы. Таким же образом можно идентифицировать активные радикалы, образующиеся в электрическом разряде (метод линейчатого поглощения света В. Н. Кондратьева [7]) или при фотодиссоциации (флеш-фотолиз [8]). При этом анализ вращательной и ко.лебательной структуры спектров позволяет не только установить природу радикала, но и определить такие егд структурные характеристики, как дл1шы связей, мОменты инерции, величины углов. [c.8]


Смотреть страницы где упоминается термин Спектры линейчатые испускания: [c.421]    [c.470]    [c.450]    [c.487]    [c.44]    [c.172]    [c.179]    [c.8]    [c.519]    [c.36]    [c.112]   
Химия (1978) -- [ c.565 ]




ПОИСК





Смотрите так же термины и статьи:

Спектры испускания

Спектры линейчатые



© 2024 chem21.info Реклама на сайте