Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы влияние на окружающие связи

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]


    Значительное влияние на бетонные, железобетонные и другие пористые материалы оказывает атмосферная влага, легко адсорбируемая этими поверхностями. С целью гидрофобизации и уменьшения смачиваемости бетон и железобетон обрабатывают органическими составами [16]. При этом в результате взаимодействия активных групп кремнийорганических соединений с гидроксильными группами, входящими в состав материала, или с водой, адсорбированной на поверхности бетона, образуется защитная пленка. Гидрофобность защитной пленки обусловлена наличием органического радикала, связанного с кремнием, и определенной ориентацией кремнийорганических молекул в пленке. При этом органический радикал ориентирован в сторону окружающей среды, а кремний и кислород, т. е. силоксановая связь, — к поверхности бетона. [c.16]

    Заметное влияние типа излучений на выход разложения воды по энергии, вероятно, зависит от степени разделения возникших Н- и ОН-радикалов, образовавшихся в треке ионизирующего луча, или от аномального распределения Н- и ОН-радикалов [86, 94]. Например, предполагается, что положительные ионы, возникшие по каждому следу а-частицы, протона или дейтона, быстро диссоциируют на Н" и радикал ОН, тогда как электрон, появившийся от первичного процесса, захватывается только на некотором расстоянии от этого пути. Вследствие этого создается избыток ОН-радикалов вдоль центра пути и избыток Н-радикалов в зоне, окружающей этот центр. Это увеличивает вероятность рекомбинации двух гидроксильных радикалов с образованием перекиси водорода и двух Н-атомов в молекулу водорода. При облучении рентгеновскими, у- или -лучами логично предполагать, что ОН- и Н-радикалы образуются в значительно меньшей концентрации и распределены более равномерно, что увеличивает вероятность их рекомбинации с образованием исходной воды. Аллен [96] показал, что потеря энергии быстрыми электронами, проходящими через воду, происходит внезапными толчками, что приводит к образованию скоплений пар ионов вдоль пути этих электронов, что также должно влиять на распределение ОН- и Н-радикалов. У нас очень мало сведений об относительных выходах по энергии в водяном паре по сравнению с выходами в жидкой воде. Однако близость между молекулами воды и наличие водородных связей в жидком состоянии, как можно предполагать, обусловливают значительные различия в механизмах реакций в обеих фазах. [c.62]

    Влияние химических факторов. При износе происходит разрыв химических связей с образованием реакционноспособных свободных макрорадикалов. Если в окружающей среде имеется кислород, то взаимодействие с ним свободного радикала приводит к цепному разрыву дополнительного количества связей, в результате чего износ возрастает. Поэтому износ в кислородной среде выше, чем в инертной (аргон), и это различие тем больше, чем больше доля усталостного износа. [c.251]


    Оба эти пути показывают, что влияние вязкости растворителя на клеточный эффект достаточно сильно. В очень вязких растворах часто наблюдается расхождение между экспериментом и теорией. В работе [4] резюмируется отклонение эксперимента от теоретических зависимостей свидетельствует о том, что модель жидкости как однородной вязкой среды описывает явление весьма неполно и в ограниченном диапазоне изменения вязкости. Видимо, это связано с тем, что уравнение Стокса-Эйнштейна не всегда применимо для описания диффузии молекул, и чем сильнее различие в подвижности радикала и мОлекулы растворителя, тем хуже модель клетки как однородной вязкой среды, окружающей пару радикалов, согласуется с экспериментом. В работе [13] показано, что доля радикалов, прорекомбинировавших в клетке, от общего числа образовавшихся радикалов (ф ) в некоторых случаях не должна зависеть от вязкости среды. Тем не менее экспериментально получают линейные или близкие к линейным зависимости ф от т] . Кроме того, имеется противоречие или существенное различие в оценках реакционной способности одних и тех же радикалов по результатам их геминальной и объемной рекомбинации. [c.203]

    Биполярные соединения, например низшие гомологи аминокислот, вследствие образования своей системы Н-связей разрушают структуру воды [42], а высшие гомологи оказывают противоположное влияние, так как роль большого углеводородного радикала в этом случае оказывается значительнее, чем роль функциональных групп молекулы [43]. В. М. Вдовенко, Ю. В. Гуриков и Е. К. Легин [41], рассматривая существующее равновесие между плотной и ажурной структурами воды, показали, что при растворении в воде неэлектролита равновесие между этими структурами смещается в сторону той, которая лучше растворяет молекулы неэлектролита. Величина свободной энергии гидратации при этом определяется двумя главными факторами затратами энергии на образование полости, необходимой для внедрения молекулы (эти затраты тем больше, чем больше размеры молекулы растворенного вещества и доля плотной структуры иоды в растворе) уменьшением свободной энергии в результате образования водородных связей между растворенными молекулами и окружающими их молекулами воды. Поскольку в плотной структуре больше ненасыщенных водородных связей, чем в ажурной, то уменьшение свободной энергии при образовании Н-связей с молекулами растворенного вещества в этой структуре тоже больше. Значительное число работ посвящено упрочнению структуры воды при растворении углеводородов [4, 44—47]. [c.17]

    Спектры ЭПР изолированных атомов и малоатомных радикалов сравнительно просты. Однако взаимодействие этих парамагнитных частиц с молекулами матриц, в которых они стабилизированы, может заметно сказываться на форме спектров. Влияние молекул, окружающих радикал, выражается в следующем в области стабилизации радикала создаются электрическое и магнитное поля, происходит обменное ваимодействие парамагнитных частиц с молекулами матрицы, наблюдается торможение движений, усредняющих анизотропные взаимодействия не спаренного электрона, изменяется структура радикалов (углы, длины связей). [c.114]


Смотреть страницы где упоминается термин Радикалы влияние на окружающие связи: [c.309]    [c.98]   
Свободные радикалы в растворе (1960) -- [ c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте