Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры атомные испускания

    Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 7). Возникновение линий в спектре обусловлено тем, что при возбуждении атомов (нагревании газа, электроразряде и пр.) электроны, принимая соответствующие [c.14]

    М Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 6). Возникно- [c.15]


    Спектры атомной флуоресценции содержат гораздо меньше линий, чем спектры испускания тех же атомов в газоразрядных источниках возбуждения (лампы с полым катодом, высокочастотные безэлектродные лампы). Как правило, число линий в спектрах атомной флуоресценции не превышает десятка. [c.501]

    Эмиссионная спектроскопия — метод элементного анализа по атомным спектрам испускания. Атомизацию растворов производят так же, как и в атомно-абсорбционной спектроскопии. Спектры испускания регистрируют обычно в спектрографах на фотопластинках — получают спектрограммы. Плотность почернения линий определяют с помощью микрофотометров. Для количественного анализа используют зависимость плотности почернения линий от концентрации излучающих атомов. Этот метод позволяет определять практически все элементы прн содержании Ю" —10 мае. долей, %. [c.241]

    Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь иа положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомны.х спектров, ои сделал вывод, что энергия >лектронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, разрешенные состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. [c.66]

    Взаимосвязь спектров испускания и поглощения иллюстрируется приведенными на рис. 11.1—2 спектрами паров натрия в видимой области. Именно атомные спектры имеют линейчатый характер. Самый простой вид имеет спектр атомного водорода похожи на него спектры щелочных металлов, и тем не менее даже в них не просто разобраться. Бальмером было установлено, что линии в видимой части спектра водорода по своим [c.190]

    Оптические спектры. В отличие от атомных молекулярные спектры характеризуются большой сложностью. Если молекулы вещества возбуждать каким-либо способом, например действием электрического разряда в разрядной трубке, то они дают спектр, состоящий из одиночных линий, отдельных полос и сплошной полосы. Такие спектры называют эмиссионными, или спектрами испускания. Если же через пары вещества пропускать свет с непрерывным спектром, например свет ртутной лампы, то в молекулярном спектре, который называется абсорбционным, или спектром поглощения, наблюдаются только полосы. На рис, П-24 и П-25 приведены для сравнения эмиссионные спектры атомного и молекулярного водорода. На рисунках видно, что еслн спектр атомного водорода состоит из одиночных линий, то в спектре молекулярного водорода, кроме одиночных линий, наблюдаются полосы и область сплошного спектра. [c.107]


    Эмиссионная спектроскопия, нашедшая широкое применение в-атомной спектроскопии, для изучения молекул используется реже. Эмиссионные спектры возникают путем возбуждения электронов в атомах или молекулах при сообщении им избыточной энергии извне и последующего возвращения их в основное состояние с испусканием квантов энергии в виде излучения строго определенных частот. Для перевода вещества в возбужденное состояние нередко применяют пламя горелки, дуговой или искровой разряд. Однако нри этом многие химические связи в молекулах разрываются и наблюдаемый эмиссионный спектр представляет собой спектр продуктов диссоциации — радикалов, атомов и ионов. В то же время именно это делает метод эмиссионной спектроскопии одним из плодотворных экспериментальных приемов для изучения радикалов, играющих решающую роль в протекании многих цепных реакций. Эмиссионные спектры используются также для изучения электронных оболочек атомов, свойств среды, образованной совокупностью атомов, получения некоторых сведений о состоянии ядер атомов, а также для целей качественного и количественного атомного спектрального анализа. [c.157]

    Для возбуждения спектров атомной флуоресценции используют фотоны, обеспечивающие переход атомов из основного в ближайшие к нему верхние состояния. В зависимости от количества фотонов, приходящихся на один акт возбуждения, механизм возбуждения может быть однофотонным или ступенчатым многофотонным. Основные процессы, вызывающие появление спектров атомной флуоресценции, приведены на рис. 14.4.73. Данные схемы объясняют появление в спектре наряду с линиями резонансной флуоресценции (рис. 14.4.73, а, б) линий нерезонансной флуоресценции (рис. 14.4.73, в-е). Нерезонансную флуоресценцию называют стоксовой, если испускаемый фотон меньше поглощенного, и антистоксовой, когда испускаемый фотон больше поглощенного. Если переход из возбужденного состояния в основное осуществляется путем последовательных переходов, каждый из которых сопровождается испусканием фотонов, то такой тип флуоресценции назьшают каскадной флуоресценцией (рис. 14.4.73, д). [c.501]

    Целью рассматриваемого в настоящей книге атомного спектрального анализа является определение элементного состава вещества по атомным (ионным) спектрам испускания и поглощения. Следует отметить, что об элементном составе вещества также можно иногда судить и по молекулярным спектрам, которые чаще всего исследуют, используя спектры поглощения, люминесценции, комбинационного рассеяния. [c.4]

    Во-вторых, модель Резерфорда приводила к неправильным выводам о характере атомных спектров. Напомним, что при пропускании через стеклянную или кварцевую призму света, испускаемого раскаленным твердым или жидким телом, на экране, поставленном за призмой, наблюдается так называемый сплошной спектр, видимая часть которого представляет собой цветную полосу, содержащую все цвета радуги ). Это явление объясняется тем, что излучение раскаленного твердого или жидкого тела состоит из электромагнитных волн всевозможных частот. Волны различной частоты неодинаково преломляются призмой и попадают на разные места экрана. Совокупность частот электромагнитного излучения, испускаемого веществом, и называется спектром испускания. С другой стороны, вещества поглощают излучение определенных частот. Совокупность последних называется спектром поглощения вещества. [c.40]

    Экспериментальный метод исследования атомов. Экспериментальной основой теории строения атомов служат главным образом данные, полученные при изучении атомных спектров испускания или поглощения излучения, регистрируемые спектральными методами. Эти методы использовали вначале (после их разработки в 1859 г.) для химического исследования атомного (элементного) состава веществ (спектральный анализ), в дальнейшем они были усовершенствованы и теперь являются мощным средством для изучения строения вещества. [c.10]

    Совокупность энергетических уровней в атоме составляет его энергетический спектр. Переходом электрона с одного энергетического уровня на последующий (более высокий или более низкий) объясняется происхождение линий в атомных спектрах испускания или поглощения. Таким образом, дискретному энергетическому спектру атома соответствует его оптический спектр. Изучение молекулярных спектров приводит к выводу, что и в молекулах имеется набор дозволенных уровней энергии электронов (см. разд. 2.3). Уровни энергии в атоме водорода представлены на рис. 1.4, который объясняет также возникновение спектральных линий при переходе электрона с одного уровня энергии на другой .  [c.15]

    Учение о спектрах электромагнитного излучения базируется на двух квантовых законах, сформулированных а 1913 г. Нильсом Бором. Согласно первому закону, атомная система устойчива лишь в определенных стационарных состояниях, соответствующих дискретной последовательности значений энергии системы С 2< з< Согласно второму закону, переход из состояния в состояние / может быть связан с электромагнитным испусканием (при ,> > /) или поглощением (при , > /)  [c.211]

    При исследовании рентгеновских лучей, испускаемых антикатодами, сделанными из различных металлов, наблюдается подобие спектров испускания этих металлов. Чем больше атомный вес металла, из которого сделан антикатод, тем больше длина волны таких [c.18]


    Особенности движения в изолированных атомах и в молекулах выражаются в структуре их спектров. Для атомов характерны линейчатые спектры (рис. А,а). Они содержат относительно небольшое число отдельных, четко отграниченных друг от друга линий с определенным положением (частотой) и яркостью. Атомные спектры испускания возникают вследствие перехода электронов с возбужденных уровней [c.42]

    Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 7). Возникновение линий в спектре обусловлено тем, что при возбуждении атомов (нагревании газа, электроразряде и пр.) электроны, принимая соответствующие порции энергии, переходят в состояние с более высокими энергетическими уровнями. В таком возбужденном состоянии томы находятся лишь ничтожные доли секунды. Переход электронов в состоянии с более низкими энергетическими уровнями сопровождается выделением кванта энергии. Это Отвечает появлению в спектре отдельных линий. [c.22]

    Эмиссионные спектры получают при высоких температурах, когда молекулы вещества распадаются на отдельные атомы и ионы. И хотя в спектрах испускания встречаются также молекулярные полосы не-распавшихся частиц, эти спектры являются в основном атомными и ионными и служат для определения элементарного состава пробы. [c.282]

    Число молекул, поглотивших фотоны и находящихся в возбужденном состоянии при обычной небольшой интенсивности светового пучка, очень мало, так что число невозбужденных молекул в образце остается постоянным. Оно зависит только от концентрации вещества. Следовательно, связь между интенсивностью полос в спектрах поглощения и концентрацией анализируемого вещества гораздо более определенна и стабильна, чем подобная связь между интенсивностью линий и концентрацией в спектрах испускания, так как число невозбужденных молекул, которые поглощают свет, зависит только от концентрации вещества в исходном образце. Недаром и для целей атомного анализа все шире используют снектры поглощения. [c.313]

    Атомные спектры испускания лежат в области видимого и ультрафиолетового излучений [c.36]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    Лтомно-эмиссионный спектральный анализ. Атомно-эмиссионный спектральный анализ - это анализ элементного состава веществ по спектрам излучения (испускания). Для того чтобы получить атомный спектр, необходимо вещество нафеть до парообразного состояния. При этом происходит возбуждение атомов - переход электронов с одних уровней на другие, испускаются кванты электромагнитного излучения. Если свет, излучаемый возбужденными атомами вещества, направить в [c.520]

    При горении водорода образуются атомы водорода. В 1913 г. Нильс Бор показал, что спектр испускания водорода в разрядной трубке можно точно интерпретировать как эмиссионный спектр атомного, а не молекулярного водорода [40]. В 1922 г. Р. Вуд впервые выделил атомный водород, полученный в электроразряд-яой трубке, и описал его свойства. Он установил, что при прохождении мощного электрического разряда через влажный газообразный водород последний полностью диссоциирует. Атомный водород можно вывести из зоны электроразряда на заметное расстояние, причем рекомбинации не происходит. Вольфрамовая проволока, помещенная в струю холодного газа, становится горячей. Атомы водорода рекомбинируют на ее поверхности и передают вольфраму энергию 2Н-—>-Н2-Ь431,24 кДж (103 ккал). После про-. хождения над вольфрамовой проволокой выходящий газ дает спектр молекулярного водорода. [c.123]

    Измерения абсолютного выхода света в спектре водородного пламени показывают, что приблизительно на каждые 100 ООО образующихся молекул воды возникает одна возбужденная молекула гидроксила. В спектре значительно более актиничного кислородного пламени окиси углерода одна возбужденная молекула возникает приблизительно па каждые 100 молекул образующегося СО2 [173]. В спектре пламени СО наблюдаются интенсивные полосы СОг [65 827, стр. 500—504], сплошное излучение, преобладающее при высоких давлениях и температурах, и, по-видимому, обусловленное процессом О - - СО = СО2 + v, а также полосы ОН и слабые полосы О2 (система Шумана — Рунге и атмосферные полосы). Заметим, что в спектре атомного пламени СО, т. е. пламени, горящего при взаимодействии СО с атомарным кислородом, сшюпгной спектр испускания отсутствует [113, 555]. [c.473]

    В атомно-абсорбционном методе анализа в качестве источников излучения чаще всего применяют специальные газоразрядные лампы с полым катодом. Конструкция ламп такова, что в спектре испускания интенсивно проявляются спектральные линии атомов, входящих в состав материала катода, или веществ, специально помещенных в полость катода. Изменяя материал катода или состав помещаемого в полость катода вещества, можно получать спекхры испускания различных атомов. Обычно каждая лампа для атомно-абсорбционного анализа дает спектр испускания атомов какого-либо одного элемента (табл. 3). Поэтому для определения нескольких элементов в пробе необходимо иметь набор ламп на различные элементы, поскольку лампы, позволяющие определять сразу несколько элементов, пока не нашли широкого применения в практике атомно-абсорбционного анализа. Таким образом, несколько элементов определяют при последовательной замене ламп, используя их поочередно в качестве источников излучения. [c.36]

    Из инсгрументальных методов определения токсичных микроэлементов в объектах окружающей среды наиболее экспрессным и универсальным является атомно-эмиссионный спектральный анализ (6-8). В сочетании с предварительным концентрированием он применяепгся для определения большого числа элементов (до. 15) Для возбуждения спектров испускания обычно используют дуговой или искровой разряд. При этом атомы и ионы переходет из возбужденного сосгояния в более энергетически низкое и излучают свет, что приводит к появлению характерных для каждого элемента спектральных линий. [c.245]

    При определенных условиях наблюдается испускание и поглощение гамма-квантов атомными ядрами ряда более тяжелых элементов, начиная с железа, без заметного изменения их энергетического состояния за счет энергии отдачи. Последняя распределяется между всеми атомами твердого вещества и, таким образом, снижается до величины, значительно меньшей очень малой естественной ширины возбужденных уровней, составляющей всего 10-10—10- 5 величины энергии возбуждения, и это позволяет наблюдать резонанс излучателя и поглотителя гамма-квантов — эффект Мёссбауэра. Важно то, что резонансная энергия гамма-квантов зависит от состава и электронной конфигурации твердого вещества. Это позволяет более глубоко изучать природу твердого вещества, определять его электронную структуру, валентное состояние элементов, находящихся в составе данного вещества. Излучателем и поглотителем гамма-квантов при излучении мёссбау-эровских спектров служат вещества, содержащие атомные ядра одного и того же элемента (например, атомы в возбужден- [c.133]

    В настоящее время в качестве источников света для атомно-абсорбционного анализа наиболее часто используют различные газоразрядные источники, спектр испускания которых совпадает со спектром определяемого атома. В этом случае не представляет труда получить в спектре испускания линии с шириной, меньшей ширины спектральных линий определяемых атомов, поскольку атомы, как правило, находятся при высоких температурах, что приводит к уширению их энергетических уровней и соответственно спектральных линий. При работе выбирают в спектре испускания одну из линий, обусловленную переходом на основной уровень (резонансную линию), и определяют ослабление ее интенсивности при прохождении излучения через слой поглощающих атомов. Очевидно, что поглощать данную спектральную линию будут атомы, находящиеся в оснавном состоянии. [c.35]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Чувствительность определения некоторых элементов методом фотометрии пламени незначительна, поскольку аналитические линии этих элементов лежат в ультрафиолетовой области спектра. Поэтому для возбуждения этих спектров требуется энергия, значительно превышающая энергию частиц в пламенах. Действительно, чтобы наблюдать линию испускания в ультрафиолетовой области, необходимо иметь достаточное число частиц, находящихся на начальном высоковозбужденном уровне энергии Е (длина волны линии обратно пропорциональна разнице энергий начального и конечного уровней перехода Х=кх1Е — Е2). Для метода атомной абсорбции важна заселенность нижнего, основного уровня, поэтому на чувствительность определения не влияет спектральная область, где лежат аналитические линии определяемых элементов. [c.37]

    Различают атомные спектры поглощения (абсорбционные) и испускания эмиссион-а 6 ные). Атомные спектры состоят из отдельных [c.240]

    Плазма тлеющего разряда внутри катода имеет температуру около 800 К- Благодаря относительно малому давлению и низкой температуре лоренцевское и доплеровское уширение линий испускания в лампе с полым катодом существенно меньше (на 2 порядка), чем в применяемых атомизаторах, например в пламени. Поэтому лампы с полым катодом удовлетворяют требованиям, предъявляемым к источникам в атомно-абсорбционном анализе, т. е. линии в спектре испускания являются очень узкими. Эффективность работы лампы с полым катодом зависит от ее конструкции и напряжения, которое подводится к электродам. Высокие напряжения и соответственно высокие значения тока приводят к увеличению интенсивности свечения. Однако это преимущество часто приводит к увеличению эффекта Доплера для линии испускания атома металла. Более того, кинетическая энергия иона инертного газа, бомбардирующего внутренние стенки полого катода, зависит от массы иона, напряжения на электродах лампы и числа соударений в единицу времени, которые происходят по мере движения иона инертного газа к катоду. Чем выше значение тока, тем больше относительное число невозбужденных атомов в облаке, вырванном в результате бомбардировки стенок полого катода ионами инертного газа. Невозбужденные атомы материала катода способны поглощать излучение, испускаемое возбужденными атомами. В результате наблюдается самоноглощение, которое уменьшает интенсивность в центре линии испускания лампы. [c.144]

    Атомный (элементный) анализ яаиболее часто проводят по спектрам испускания - эмиссионный опсктральный анализ. Исследуемое вещество вводят в источник излучения, где вещество диссоциирует иа атомы, которые переходят в возбужденное состояние. Испускаемое ими излучение разлагается в спектр, для чего его пропускают через призму из стекла или из кварца. Спектр регистрируют на фотографической пластинке или другими способами. Для возбуждения спектра и его регистрации применяют спектральные приборы - спектрографы (рис. 1.1). [c.11]

    Обычно для установления структуры молекул изучают их спектры поглощения. Для этого через исследуемое вещество пропускают свет и с помощью спектрографа (см. разд. 1.2) определяют, излучение каких длин волн поглощается. Поглощая квант излучения, молекула переходит из одного энергетического состояния в другое, при этом погло1цаются только те кванты, энергия которых равна энергии этих переходов. Таким образом, спектр поглощения, как и атомный спектр испускания (эмиссионный спектр), позволяет судить об энергетических уровнях в молекуле. [c.69]

    Согласно квантовой механике излучение (поглощение) происходит только при переходе из одного стационарного состояния в другое. При этом изменяется распределение электронной плотности, что с классической точки зрения отвечает появлению дипольного момента в акте перехода. Анализ показывает, что атомная (молекулярная) система под влиянием возмущения, изменяющегося во времени, например под влиянием периодически изменяющегося электромагнитного поля (света), может совершать переходы из одного стационарного состояния в другое, пог.нощая при этом квант энергии г = км = = Е"—Е . Время перехода ничтожно коротко. Время жизни в возбужденном состоянии около 10 с (за исключением особых случаев). Возвращаясь в основное состояние, атом (молекула) изучает квант с энергией е = /IV, и в спектре испускания наблюдается линия с частотой [c.35]

    Вопрос о полярности мо.пекул имеет большое значение, так как с нею связано взаимодействие между молекулами, а значит, их поведение в растворах, расплавах и кристаллах, поверхностные явления, адсорбция, сжижение газов и другие процессы. Наконец, весьма важно, что активность в спектрах поглощения и испускания молекул, интенсивность спектральных линий и полос во многом зависят от полярности химической связи. В использованном приближении МО ЛКАО полярность ковалентной химической связи отражается различием в коэффициентах при атомных волновых функциях в выражении для молекулярной орбитали  [c.132]

    Один из первых случаев обнаружения индуцированной предиссоциации касается особенностей спектра поглощения молекулы 1г для перехода (рис. 3.1). При очень низких давлениях поглощение в линейчатой области ниже диссоциацион-ного континуума сопровождается соответствующим спектром флуоресценции. Существует, однако, пересекающее состояние Ш электронное состояние, для которого безызлучательные переходы обычно запрещены, и добавление постороннего газа (Аг при давлении около 30 мм рт. ст.) приводит к ослаблению полос испускания, расположенных выше предиссоциационного предела. В самом деле, продукт предиссоциации — атомарный иод — детектируется (по атомным линиям поглощения) при тех же условиях, когда исчезают полосы испускания. Увеличение интенсивности соответствующих полос поглощения также наблюдается при добавлении постороннего газа, и нет сомнений, что этот эффект — результат индуцированной предиссоциации, Предиссоциация приводит к образованию двух атомов в основном состоянии и наблюдается для других галогенов так же, как и для г, при длинах волн, обеспечивающих достаточную энергию для разрыва цепи. Так, при фотоброми-ровании этилена квантовый выход первой стадии [c.55]

    Хотя лампы с нитью накала находят ряд применений, когда лужно излучение с непрерывным спектром, значительно более высокие интенсивности почти монохроматического излучения получаются фильтрацией света ламп, испускающих больщую часть энергии в небольщом наборе узких полос или линий. Для этой цели можно использовать несколько типов газоразрядных ламп, наполненных инертными газами или парами летучих элементов (обычно металлов), дающих подходящие атомные линии испускания. При низком давлении почти вся излучаемая энергия может концентрироваться в резонансных линиях (соответствующих переходам из первого возбужденного состояния в основное). При этом достаточно монохроматичный свет может быть получен без применения фильтров. Типичными примерами являются лампы низкого давления с ксеноно-вым наполнением (Х= 147,0 нм) или ртутным наполнением (Я= 184,9 нм, 253,7 нм, ср. со с. 42). Во втором случае обычно присутствует небольшое количество инертного газа, который почти не дает вклада в испускаемое излучение. При повышенных давлениях и высокой рабочей температуре под действием разрядов через пары металлов в излучении ламп появляется большое число линий, уширенных давлением. Излучение собственно резонансной линии часто при этом поглощается более холодными парами металла вблизи стенок лампы. Ртутные разрядные лампы очень широко применяются в фотохимических экспериментах. В табл. 7.1 показаны относительные интенсивности основных линий для стандартных ламп низкого давления (интенсивность линии при >. = 253,7 нм принята за [c.180]

    Атомно-эмиссионный спектральный анализ — это метод анализа по спектрам испускания, которые возникают при испарении и возбуждении пробы в дуге, искре или пламени. Возбужденные атомы и ионы спонтанно, самопроизвольно переходят из возбужденного Ек в более низкие энергетические состояния ,. Этот пооцесс ведет к излучению света с частотой у, г = ( А — Е1)/к и появлению спектральной линии. [c.646]

    Если источником света является разрядная трубка, содержащая некоторый элемент в газообразном состоянии, то возникает спектр, состоящий из линий различного цвета на черном фоне. Такой спектр называют атомным спектром испускания (эмиссии) или линейчатым спектром (рис. 2.1,6). Спектры испускания можно получить для любого вещества, если тем или иным способом возбудить его, например, с помощью электрического разряда или нагревая вещество в пламени. Атомные спектры испускания лежат в видимой и ультрафиолетовой областях спектра. Если внести в пламя горелки натрий или его соединение, то излучается свет с длиной волны 590 нм, и пламя окращи-вается в желтый цвет. У водорода, помещенного в трубку и возбуждаемого с помощью электрического разряда, цвет свечения красновато-розовый. [c.36]

    Методы изучения спектров свободных радикалов. Наиболее старый метод получения спектров свободных радикалов связан с возбуждением спектров испускания. Пламена представляют собой типичный пример источника таких спектров. В спектре обычной бунзеновской горелки наблюдается ряд двухатомных свободных радикалов, таких, как СН, С2 и ОН. В спектре углеводородного пламени вблизи 2800 А появляется, кроме того, распространенная система полос, получившая название полос углеводородного пламени. Предположительно эта система полос была отнесена к свободному радикалу НСО, но только совсем недавно попытки проанализировать этот спектр привели к частичному успеху. Другим типом пламени для получения свободных радикалов является атомное пламяу в котором атомарньж водород, кислород или азот взаимодействует с молекулами, вызывая излучение, обусловленное образованием свободных радикалов. Например, атомарный водород с окисью азота N0 дает пламя, спектр которого в основном связан с НКО. Взаимодействие активного азота (т. е. атомарного азота) практически с любым газообразным соединением приводит к возбуждению спектров испускания некоторых свободных радикалов В качестве одного из интересных примеров укажем на пламя, возникающее при добавлении паров ВС1з в струю активного азота. При этом возбуждается интенсивный дискретный полосатый спектр, [c.11]


Смотреть страницы где упоминается термин Спектры атомные испускания: [c.664]    [c.149]    [c.170]    [c.6]    [c.179]    [c.519]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Спектры атомные

Спектры испускания



© 2025 chem21.info Реклама на сайте