Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрики, металлизация

    РАБОТА 15. ХИМИЧЕСКАЯ И ЭЛЕКТРОХИМИЧЕСКАЯ МЕТАЛЛИЗАЦИЯ ДИЭЛЕКТРИКОВ [c.96]

    Способы металлизации диэлектриком можно разделить на четыре вида механические, физические, химические и -)лектро-химические. Перечисленные способы применяют как самостоятельно, так и в различных сочетаниях. Чаще всего используют химико-гальваническую металлизацию, в которой на поверхность диэлектриков наносят металл сначала путем химического восстановления из растворов, а затем электрохимически. Большой интерес представляют новые электрохимические методы нанесения металлических покрытий непосредственно на диэлектрики, минуя стадию химического восстановления металлов. [c.96]


    Металлизация диэлектриков путем химического восстановления металлов. Металлизация диэлектриков включает три основные операции  [c.96]

    В ходе активирования на поверхности диэлектрика образуются каталитические центры, являющиеся инициаторами процесса автокаталитического восстановления металла. Наиболее универсальными и удобными являются химические методы активирования в жидкой фазе. Они применимы для любых поверхностей. Суть -)тих методов заключается в том, что на активируемую поверхность наносят малые количества металлов-ката-лизаторов (активаторов) или насыщают поверхностные слои сильными восстановителями, способными в растворе химической металлизации легко восстанавливать ионы осаждаемого металла. Наибольшее распространение получил так называе- [c.97]

    Применяют также растворы, позволяющие объединить сенсибилизацию и активацию в одну технологическую операцию. Такие растворы называют совмещенными активаторами. Готовят их, как правило, путем приливания раствора хлорида палладия в солянокислый раствор хлорида олова(II). Вопрос о природе действия совмещенного активатора однозначно пока не решен. Установлено, что как при раздельной активации поверхности диэлектрика, так и в случае применения совмещенного активатора на поверхности диэлектрика образуются активные центры кристаллического палладия или его сплавов с оловом, инициирующие химическое восстановление металлов. Если после активирования поверхность не обладает достаточной каталитической активностью, то в качестве акселератора (ускорителя реакции восстановления металла) применяют повторно раствор активации или сильный восстановитель (чаще тот, который используют при химической металлизации). Для металлизации диэлектриков наиболее часто используют покрытия медью и никелем. [c.98]

    В производстве печатных плат используют химико-гальваническую металлизацию по слою химически восстановленной меди осаждают медь электролитически из сульфатных, фтор-боратных, дифосфатных и некоторых других электролитов. Для других промышленных целей, когда нужно снизить массу конструкции, сэкономить металл, придать поверхности изделия заданные свойства, а также для производства товаров народного потребления применяют электрохимическую металлизацию диэлектриков, минуя стадию химического восстановления металлов. [c.98]

    Электрохимическая металлизация диэлектриков. Особенности первичной подготовки поверхности диэлектрика перед нанесением токопроводящего слоя (обезжиривание, травление), как и в случае химической металлизации, зависят от природы покрываемых изделий. Создание электропроводящего слоя перед электрохимической металлизацией осуществляют, как правило, без применения драгоценных металлов. Для этого на диэлектрик наносят окунанием или из пульверизатора органический растворитель или эпоксидную смолу, содержащие в качестве наполнителя высокодисперсные порошки металлов, т. е. [c.98]


    Площадь поверхности медной фольги, свободной от защитного рисунка, вытравливается до основания диэлектрика, После удаления защитного рисунка на поверхности диэлектрика остаются токопроводящие полоски — проводники электрической схемы. Для соединения рисунков двусторонних плат применяют химико-гальваническую металлизацию отверстий. [c.105]

    Аддитивный способ заключается в создании проводящего рисунка посредством металлизации достаточно толстым слоем химической меди (25—35 мкм), что позволяет исключить применение гальванических операций и операции травления. Исходным материалом при этом служит нефольгированный диэлектрик. Исключение вышеуказанных операций позволяет существенно уменьшить ширину проводников и зазоры между ними, что, в свою очередь, обеспечивает возможность увеличения плотности монтажа на платах. Кроме того, как показал опыт, применение этого метода на ряде фирм США способствует снижению стоимости плат на 15—20 %, а также расходов химикатов, сокращению производственных площадей и состава оборудования. До 10 % плат, производимых в Европе и США, изготавливаются по аддитивному методу. Этот способ требует применения стабильных в работе скоростных растворов химического меднения. [c.106]

    Ильин В. А. Металлизации диэлектриков,—Л, Машиностроение, [c.317]

    Подготовка поверхности неорганических диэлектриков К неорганическим диэлектрикам относятся керамика, стекло фарфор слюда ситаллы ферриты Металлизацию неорганических диэлектриков применяют для придания поверхности деталей свойств металла электропроводности способности к пайке, теплопроводности Металлизацию стекла используют для получения зеркал Силикатные материалы (стекло кварц ситаллы, слюда ИТ п ) подвергают сначала химическому обезжириванию а затем обработке в хромовой смеси и в растворе плавиковой кислоты [c.37]

    На основании промышленного опыта применения растворов химического меднения при металлизации диэлектриков и в производстве печатных плат рекомендуются растворы составы которых представлены в табл 23 [c.76]

    Металлизированные пластмассы, обладая полезными свойствами металла и диэлектрика, находят все более широкое применение во многих отраслях народного хозяйства. Металлизации подвергают разнообразные материалы, из которых наиболее широко распространены пластмасса АВС — сополимеры полистирола, акрилонитрила и бутадиена, — а также стеклотекстолит. Химический способ металлизации является наиболее удобным и доступным для различного рода диэлектриков. [c.334]

    Металлизация диэлектриков включает следующие операции  [c.334]

    Технология изготовлеиия печатных плат состоит в следующем [21]. На поверхность медной фольги наносят фоторезист экспонируют печатную схему, проявляют и вытравливают рисунок. В двусторонней или многослойной печатных платах для соединения металлических слоев между собой высверливают отверстия, которые подвергают химическому меднению. Для увеличения толщины слоя меди на поверхности и внутри отверстий применяют электрохимическое меднение. Печатные схемы имеют сложный рисунок (рис. 133). В печатной схеме для компьютера — около 10 ООО отверстий. Изготовляют печатные платы толщиной от 3 до 40 мкм. Наиболее ответственный этап в технологии изготовления печатных плат — металлизация отверстий и достижение надежного контакта между слоями. Для этого, например, применяют травление диэлектрика (см. табл. 21). Раствор для травления должен удалять даже полимер, подвергнутый деструкции во время сверления. [c.259]

    Путем химической металлизации можно сразу получить толстый (20 мкм) слой покрытия на предварительно подготовленном диэлектрике. Но для химического наращивания такого слоя требуется 4 ч, поэтому целесообразно сочетать химический и электрохимический способы осаждения. Например, вначале химически осадить электропроводную пленку толщиной 2—3 мкм, а затем нарастить ее гальванически до требуемой толщины. Однако при гальваническом наращивании необходима электрическая эквипотенциальность рисунка, что заставляет применять временные технологические перемычки. [c.85]

    Китаев Г. А. и др. Опыт металлизации органических диэлектриков с использованием пленок халькогенидов металлов. — Вопросы радиоэлектроники, сер. ТПО, 1976, вып. 3, с. 72—78. [c.197]

    Наиболее широкое применение имеют электрохимические, или гальванотехнические, способы осаждения металлов из расплавов или водных растворов электролитов путем электролиза. Но при металлизации диэлектриков приходится предварительно специально подготавливать их поверхность. Об этом подробнее мы расскажем в дальнейшем. Отметим лишь, что гальванический способ металлизации наиболее развит и технически обеспечен. Среди других способов он выделяется как гигант своей технической мощью. Гальванотехнику обслуживают мощные химические и механические предприятия, производящие как химические реактивы и композиции для составления и корректирования электролитов, так и оборудование и вспомогательные устройства. Поэтому не удивительно, что для металлизации пластмасс стараются применять именно гальванотехнические приемы. [c.19]

    Используя восстановительные свойства Си (I) в сорбционно-контактном способе металлизации, можно осадить Сплавы Си—Pd. Этот способ является как бы гибридом иммерсионного (когда металлическое покрытие образуется за счет растворения металлической подложки из менее благородного и более активного металла) и химического методов Си (I) образуется при растворении медной фольги на фольгированном диэлектрике, а покрытия (сплавы Си— Pd) осаждаются вблизи ее. Кроме того, используя ионы Си (I) и реакцию их диспропорционирования, можно получать медные покрытия. [c.26]


    Металлизи-рованные диэлектрики представляют большой интерес для многих отраслей промышленности, так как сочетают в себе полезные свойства металла и диэлектрика. Металлизация диэлектриков дает возможность экономить металл, снижать массу конструкций, придавать изделиям красивый внешний вид, получать пресс-формы методом гальванопластики для изготовления точного металлорежущего инструмента п копировать произведения искусства. Важное место занимает способ нанесения функциональных покрытий на диэлектрики для изделий электронной промышленности, особенно для производства печатных плат. [c.96]

    Цель работы 1. Ознакомление с процессом осаждения меди на АБС-пластмассу (акрилбутадиенстирольные композиции) путем химического восстановления металла с использованием раздельной (универсальной или классической ) активации и сенсибилизации, а также с помощью совмещенного активатора. Оценка влияния различных способов активирования диэлектрика на сцепление покрытия, полученного методом хими-ко-гальванической металлизации, с основой. [c.99]

    Мировое применение нашло химическое ннкелированне для металлизации диэлектриков как в функциональных цетях (изделия электронной промыилснпости, контакты на полупроводниках, покрытия для облегчения пайки и т. д.), так н для получения электропроводного стоя при декоративной металлизации пластмасс. [c.199]

    Для металлизации диэлектриков можно применять кислые и щелочные растворы Наиболее популярными для химического никелирования иеметатлических материалов являются следующие растворы (г/л) [c.43]

    При замене металтических деталей металлизированными тает массовыми деталями уменьшаются масса и себестоимость приборов и изделий поэтому металлизация пластмасс широко применяется в радиоэлектронике автомобилестроении в производстве телефонных аппаратов деталей велосипедов и т п В некоторых случаях медь химическим способом наносят на многослойную поверхность состоя щую из чередующихся слоев металла и диэлектрика Иногда меднит сложные поверхности металл — полупроводник — диэлек [c.73]

    Среди изделий, получаемых путем механической металлизации, наиболее широко распространены фольгирован-ные пластики. Их производят следующим образом. На листы стеклотекстолита, асботекстолита, гетинакса (рис. 2, 4) толщиной от 0,1 до нескольких миллиметров клеями БФ-4, БФР-4, ВС-юг наклеивают металлическую, обычно медную, фольгу толщиной 35—50 мкм. Такие пластики используются в основном в электротехнике. Для нужд отрасли ежегодно изготовляют десятки миллионов квадратных метров таких фольгированных пластмасс. Их производство удваивается каждую пятилетку. В настоящее время в СССР выпускают около 15 марок с льгированных диэлектриков. [c.10]

    Иногда реакции разложения проводят и в растворах. Например, путем разложения комплексных гидридов алюминия, растворенных в органических растворителях, можно наносить алюминиевые покрытия на различные диэлектрики, в том числе и на пластмассы. Однако из-за малой доступности комплексных гидридов алюминия и из-за не-удоства работы с органическими растворителями этот способ металлизации не нашел широкого применения. [c.18]

    Можно полагать, что в будущем появятся и совершенно новые способы металлизации, а старые будут модифицированы и усовершенствсваны. Со временем расширится и ассортимент наносимых на диэлектрики металлических покрытий, появится возможность целенаправленно улучшать их свойства согласно техническим требованиям потребителей. Однако для осмысленного и целенаправленного поиска новых технологических решений необходимы систематизированные и обобщенные знания, то есть необходима самостоятельная область науки. Такая наука — химическое материаловедение — лишь зарождается на стыке физики твердого тела и химии твердых веществ. Она должна охватить весь богатейший материал эмпирических фактов производственного и эксплуатационного поведения новых материалов и разработать научное мировоззрение в этой области. Научный подход позволит не только увидеть новые перспективы, но и более точно оценить имеющиеся возможности. [c.21]

    Функциональные показатели количественно характеризуют растворы и получаемые покрьггия. Среди первых можно выделить скорость осаждения (мкм/ч, мг/см -ч), температуру, кислотность и другие технологические показатели применения раствора чувствительность к активации, определяемую по обратной величине периода индукции реакции металлизации ( - ) или по минимальному количеству активатора на поверхнсстн диэлектрика (мг/см ) состав и возможные отклонения концентраций компонентов от оптимального. Качество покрытий оценивают по химическому составу физическому составу и структуре механическим свойствам (твердость, пластичность, эластичность, вязкость, прочность, ползучесть) физическим свойствам (электропроводность, теплопроводность, магнитная восприимчивость и вязкость, отражательная способность, прозрачность) химическим свойствам (коррозионная стойкость, растворимость и т. п.) технологическим свойствам (паяемость, свариваемость, полируелюсть). [c.35]


Библиография для Диэлектрики, металлизация: [c.174]    [c.175]    [c.175]   
Смотреть страницы где упоминается термин Диэлектрики, металлизация: [c.99]    [c.52]    [c.259]    [c.205]    [c.573]    [c.99]   
Прикладная электрохимия (1984) -- [ c.334 ]

Прикладная электрохимия Издание 3 (1984) -- [ c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрики

Металлизация

Химическая п электрохимическая металлизация диэлектриков



© 2024 chem21.info Реклама на сайте