Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитический центр

    Третья возможность основана на избирательном промотировании каталитических центров целевой реакции или отравления центров реакции уплотнения, т. е. воздействии на определяющую стадию реакции. В качестве примера может служить промотирование алюмоплатинового катализатора дегидрирования парафиновых углеводородов. Введение в состав катализатора щелочных металлов приводит к снижению кислотности алюмоплатинового катализатора и обуславливает подавление в процессе дегидрирования парафиновых углеводородов реакций крекинга, изомеризации и коксообразования, идущих с участием кислотных центров, что, однако, не приводит к сохранению стабильности из-за одновременного уменьшения поверхности платины [63]. [c.41]


    Каким требованиям должен отвечать катализатор для подобного процесса Во-первых, он должен обладать специфическими хемосорбционными свойствами, то есть с разной активностью притягивать и сорбировать на себе различные молекулы нефтяного сырья. Во-вторых, необходима высокая пористость, причем желательно уметь регулировать диаметр и глубину пор. Это позволит упорядочить процесс адсорбции молекул на активных каталитических центрах, осуществить направленные превращения углеводородов, а затем десорбировать с контакта продукты превращения. В-третьих, структура и свойства катализатора должны способствовать организации наиболее эффективного тепло- и массообмена в реакционной зоне — ведь каталитический крекинг процесс термокаталитический, и роль температуры здесь особенно велика. Отсюда требования к механической прочности катализатора. [c.82]

    Значительно многообразнее причины снижения активности твердых катализаторов. Под влиянием условий процесса твердые катализаторы претерпевают как физические, так и химические изменения. Физическим изменениям подвергаются макро- и микроструктуры катализатора. При длительном воздействии температуры, при которой катализатор работает, происходит рекристаллизация металлов, приводящая к уменьшению удельной поверхности катализатора или числа активных каталитических центров на единице его поверхности. Механические и термические воздействия на катализатор приводят к постепенному разрушению его частиц. В ряде случаев для повышения устойчивости катализатора к рекристаллизации в его состав вводят небольшие добавки веществ, не обладающих собственной каталитической активностью или имеющих относительно небольшую активность, но резко уменьшающих скорость рекристаллизации активного компонента катализатора. [c.136]

    Предложен ряд теорий, объясняющих, или вернее предполагающих, схемы дейстеия катализаторов. С нашей точки зрения наибольшего внимания заслуживает мультинлетная теория катализа, разработанная акад. Баландиным. Согласно этой теории поверхность катализатора неоднородна, на ней имеются отдельные активные точки. Несколько активных точек образует каталитический центр — мультиплет. На таком каталитическом центре и происходит химическая реакция. Молекулы реагирующих веществ притягиваются к активным центрам, сгущаются вокруг них или, как говорят, адсорбируются на катализаторе. В результате одновременного притяжения 1 нескольким активным точкам внутри молекулы возникают напряжения, приводящие к разрыву реагирующей молекулы с образованием новых молекул и протеканию ряда последующих реакций. [c.45]


    Роль окислительного присоединения, непредельного углеводорода к переходному металлу на стадиях образования каталитических центров иллюстрируется реакциями циклоолигомеризации бутадиена соединениями N1(0). При обработке циклододекатриен-никеля, бис(циклооктадиен)никеля бутадиеном в определенных условиях могут быть выделены я-аллильные металлорганические соединения I и П, способные, в зависимости от природы лигандов у атома металла, генерировать циклододекатриен или циклооктадиен [59]  [c.106]

    ОТ того, насколько каталитический центр выступает над поверхностью носителя, как бы растворяясь в органическом растворителе. Влияние структуры носителя было тщательно изучено [1800] (см. обзор ]56] в гл. 2). [c.102]

    В ходе активирования на поверхности диэлектрика образуются каталитические центры, являющиеся инициаторами процесса автокаталитического восстановления металла. Наиболее универсальными и удобными являются химические методы активирования в жидкой фазе. Они применимы для любых поверхностей. Суть -)тих методов заключается в том, что на активируемую поверхность наносят малые количества металлов-ката-лизаторов (активаторов) или насыщают поверхностные слои сильными восстановителями, способными в растворе химической металлизации легко восстанавливать ионы осаждаемого металла. Наибольшее распространение получил так называе- [c.97]

    Величины и 1ц представляют собой путь, который должны пройти молекулы реагента, и характеризуют возможное удаление молекул от каталитического центра (как наименьшее, так и наибольшее). Пользуясь этими величинами, можно оценить время завершения каталитического процесса при диффузионном режиме (тормозящей стадией является транспортирование к каталитическому центру). Смещение молекулы на Дл за счет диффузии связано с коэффициентом диффузии О и временем смещения т уравнением Эйнштейна  [c.131]

    Катализаторы со временем могут терять свою активность. Это объясняется тем, что обычно побочные химические процессы, в результате которых каталитически активный центр — атом, молекула, ион, каталитический центр на поверхности —блокируется, выводится из сферы реакции. Такими процессами могут быть реакции нейтрализации в кислотно-основном катализе, комплексообразования, когда катализатор в виде ионов комплексуется с определенными лигандами и выходит из сферы реакции реакции образования нерастворимых соединений и др. Потеря каталитической активности может быть обусловлена химическим распадом в результате термических или фотохимических процессов. Явления, когда активность катализатора резко уменьшается при прибавлении незначительных количеств некоторых веществ, иногда падая до нуля, называется отравлением катализаторов. Вещества, резко понижающие активность катализатора, называются каталитическими ядами. Сильное действие каталитического яда объясняется тем, что в большинстве каталитических процессов концентрация катализатора очень мала и для блокирования каталитических центров нужны незначительные количества каталитического яда. [c.622]

    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    Приведенные соображения и количественные примеры позволяют высказать некоторую общую идею. Пусть две параллельные реакции протекают на различных каталитических центрах, каждая по одномаршрутному двухстадийному механизму. Тогда с ростом [c.45]

    Образование иона карбония из олефинов на поверхности алю-мосиликатного катализатора происходит при взаимодействии протона каталитического центра с я—электронами двойной связи  [c.133]

    В самом широком смысле фермент — это белок, обладающий каталитической активностью. Более точно его можно определить как полипептидную цепь или совокупность полипептидных цепей, обладающих в нативной форме каталитической активностью. Это сложный сополимер, состоящий из мономеров — аминокислот, находящихся в одинаковой конфигурации. Катализ происходит в специфической области фермента, которую называют каталитическим центром или каталитической щелью. Активный центр состоит из остатков аминокислот, которые участвуют в узнавании и связывании субстрата, а в каталитический центр входят только остатки аминокислот, прямо участвующих в процессе катализа. Согласно существующему представлению об активном центре, лишь некоторые группы в составе ферментов вызывают его высокую каталитическую активность, очень часто комплементарным [c.201]


    НЫХ групп между удаленными друг от друга каталитическими центрами (рис, 7.13). [c.471]

    На поверхности катализатора имеются каталитические центры двух видов  [c.52]

    В результате применения "нетрадиционного" способа пуска катализаторов риофрминга происходит дополнительная активация каталитических центров. Вследствие этого организуется значительно более стабильная форма. Это позволяет работать в более жёстком режиме или при работе в обычном режиме удлиннить в 1,5-1,7 раза межрегенерационный цикл. [c.73]

    В активный каталитический центр входят группы, которые могут ориентировать молекулы субстрата в определенном положении по отношению к активному центру. Активный центр фермента имеет строго определенную структуру. Он подобен матрице, в которую может войти молекула только определенного строения. Обычно в ферменте на участок цепи с молекулярной массой 30 000—80 ООО приходится один активный центр. В настоящее время известно около тысячи ферментов. Отдельные группы ферментов катализируют окислительно-восстановительные реакции (оксидоредуктазы) реакции с переносом групп (трансферазы) реакции гидролиза (гидролазы) реакции отщепления групп атомов негидролитическим путем с образованием двойной связи или присоединением по двойной связи (лиазы) реакции изомеризации (изомеразы) реакции присоединения двух молекул (синтетазы). Приведенный перечень реакций, катализируемых ферментами, показывает, что при температурах 0—40° С в живом организме синтезируются высокоэффективные катализаторы практически для всех реакций, связанных с жизнедеятельностью организма. [c.632]

    Гомогеннокаталитические реакции протекают в сфере воздейст вия каталитического центра и, очевидно, включают бимолекуляр ные стадии взаимодействия молекул реагента и катализатор -В связи с этим интересно сопоставить экспериментальные данны с расчетом возможной скорости изомеризации на основе анализ процессов переноса в жидкости и числа бимолекулярных соудг рений. [c.130]

    Расчет процессов переноса в жидкости. Для осуществления химическс реакции са.мые удаленные от каталитического центра молекулы должны подойт к нему за счет диффузии, войти в каталитическую сферу (соударение) и пр< терпеть химическое изменение (собственно реакция). Учитыва"я, что для ря гомогенных катализаторов отмечена чрезвычайно высокая скорость реакции (иЗ меризация гексена-1 в присутствии соединений N1 заканчивается за доли секу ды), целесообразно оценить скорость физического транспортирования. [c.130]

    Наиболее простая модель, представляющая взаимное расположение молекул реагирующих веществ. и катализатора, — ячейка, содержащая один каталитический центр (одну молекулу катализатора) и соответствующее число молекул реагентов. Имеет смысл рассмотреть две ячейки сферическую и цилиндрическую. При сферической форме молекула катализатора, очевидно, находится в центре сферы и реагенты движутся к ней по радиусам. При этом к каталитичёскаму центру будет одновременно подходить несколько молекул реагента, и необходимо предположить высокую скорость реакции и высокую скорость вращательного движения каталитического центра. Если же для каталитического акта необходима определенная взаимная ориентация реагента и катализатора, правильнее рассмотреть ячейку в форме цилиндра, радиус основания которого близок к диаметру молекулы катализатора ( к), а высота /ц определяется объемом реакционной смеси, приходящимся на одну молекулу катализатора. Определим вначале радиус сферической ячейки (Яс). Так как объем, приходящийся а одну ячейку Уя, равен [c.131]

    Существенный вклад в теорию применения ЛССЭ к гетерогенному катализу вносит учет функции распределения каталитических центров по коррелирующему параметру, например по функции кислотности Гаммета. В этом случае, в соответствии о основным уравнением Рогинского для неоднородных поверхностей, скорость реакции для кислых катализаторов, если предположить, что активность катализатора зависит только от силы кислоты и вид кинетической зависимости одинаков для всех центров, выразится уравнением [c.161]

    Особенности ферментативного катализа с точки зрения общей теории каталитических процессов заключаются в следующем. Каталитический процесс протекает в ограниченной области, называемой активным каталитическим центром фермента. Активный центр фермента содержит активные группы — доноры или акцепторы электронов (группы, содержащие пиридиновое кольцо или имидазольные кольца, хиноидные группы, комплексированные ионы металлов и др.). Необходимым условием каталитического действия ферментов является структурное соответствие активного центра и субстрата. [c.633]

    В последние годы большое внимание уделяется изучению механизма образования промежуточных комплексов и их структуры при контакте с гетерогенными катализаторами — оксидами, сульфидами, цеолитами. В работе [10] рассмотрен механизм активации пропилена и последующее алкилирование бензола при использовании алюмосиликатов. Авторы считают, что каталитическими центрами являются полиэдры типа [АЮ4] , [АЮз] и [А10б] , имеющие вакантные или малозаселенные Зй(-орбитали, способные к заполнению электронами с молекулярных орбиталей возбужденных молекул пропилена и бензола. [c.69]

    Пусть параллельные реакции А + В->С и А + В->В протекают на одних и тех же каталитических центрах [2] по двухмаршрутному механизму (I) —(П). Соответствующая кинетическая модель с учетом баланса [2] + [А2] + [В2] = 1 примет такой безразмерный вид  [c.44]

    Металл может функционировать как связующий мостик между ферментом и субстратом или же сам может участвовать в активации субстрата. Мартел с сотр. [71] указывают, что активированные металлами ферменты являются, вероятно, каталитическими хелатными системами, в которых металл связан с остатками фермента при помощи хелатных колец и действует как активный каталитический центр для комбинации с субстратом. [c.94]

    В соответствии с современными иредставления.ми на поверхности алюмосиликатного катализатора имеется 2 типа каталитических центров протонные и аиротонные. Ниже представлены предполагаемые структуры этих центров  [c.130]

    Фермент благодаря своей жесткой трехмерной структуре образует каталитический центр, в котором и осуществляется каталитическая реакция. В то же время небольшой по размеру пептид имеет слабожесткую структуру и не обладает каталитическими свойствами. Интересно, что если ион металла связан с пептидом, то можег происходить гидролиз амидной связи, аналогичный гидролизу, наблюдаемому в присутствии гидролитических ферментов. Таким образом, гидролиз амидов (и эфиров) подвержен каталитическому действию различных ионов металлов, поскольку а-ами-ногруппа и кислород карбонильной группы — два хороших потенциальных лиганда при комплексообразовании. Другими словами, координированные лиганды (пептид) приобретают удивительную активность благодаря эффекту оттягивания электронной плотности положительно заряженными ионами металла. [c.352]

    Чисто физическая — адсорбционная теория—объясняет ускорение реакции в присутств ии катализатора адсорбцией реагирующих веществ на поверхности катализатора и активацией адсорбированных молекул, частично за счет теплоты адсорбции. Большая концеятращия молекул в адсорбированном слое должна опособ-ствовать реакции, ускоряя ее. Согласно новым воззрениям молекулы реагарующето вещества не просто адсорбируются поверх-но стью катализатора, а располагаются на поверхно сти катализатора, притягиваясь отдельными частями к особым точкам поверхности катализатора — а-ктивным центрам. Совокупность нескольких разных активных точек на поверхно1Сти катализатора образует каталитический центр, способный адсорбировать реагирующие молеиулы и спо собствовать протеканию реакции. [c.117]

    Последние исследования показали, что такое описание слишком упрощенно 34], сАМР-зависнмая протеинкиназа представляет собой тетрамерный белок состоящий из двух каталитических и двух регуляторных субъединиц. Далее, сАМР-зависимые протеинкиназы можно разделить на два типа I и П.-Основное различие между двумя этими типами заключается в способности регуляторных субъединиц киназ типа II фосфорилироваться каталитической субъединицей. В то же время сОМР-зависимая протеинкиназа представляет собой димерный белок, состоящий из двух идентичных субъединиц. Каждая субъединица имеет сПТР-связываюший и каталитический центры в одной полипептидной пепи. [c.143]

    Важное значение имеет также представление об упорядоченной геометрии каталитического центра именно благодаря такой геометрии зх-комилексы металлов и олефинов дают упорядоченные структуры. Например, модель никельциклододека-триена показывает, что атом никеля находится точно в центре кольца ключ подходит к замку очень точно — вот еще одна аналогия с ферментсубстратным комплексом. [c.199]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    Карбоний-ионный механизм каталитического крекинга исходит из кислотного характера алюмосиликатного катализатора, имеющего условную формулу яА120з /я5102-д Н20. На поверхности катализатора имеются каталитические центры двух видов протонные, где каталитическая функция принадлежит протонам (кислоты Бренстеда), и апро-тонные (кислоты Льюиса), где координационно ненасыщенный атом алюминия служит акцептором электронов. [c.89]

    В нашей работе методом мессбауэровской спектроскопии исследовалось структурное и магнитное состояние соединений железа в конденсированных в разных местах реактора сырых продуктах электродугового испарения в зависимости от химической природы катализатора, его концентрации, технических параметров диспергирования и в соответствии с местами наибольшего выхода одностенных нанотрубок. В качестве катализаторов использовались ультрадисперсные порошки или чистого Ре, или смеси Ре и N1 в разной концентрации. Было установлено, что химическая природа катализатора определяет количественное соотношение между образующимися большими, инертными металлическими частицами, инкапсулированными в углеродную оболочку, и мелкими металлическими наночастицами, являющимися каталитическими центрами зарождения одностенных ианотрубок. Анализ параметров мессбауэровских спектров позволил связать эффективный выход одностенных нанотрубок с формированием на мелких каталитических частицах железографитового комплекса. [c.110]

    Процесс окисления парафиновых углеводородов аналогично окислению изооктана протекает в кинетической области, зависимость константы скорости реакции окисления паров парафиновых у1 леводородов от гемпературы подчиняется уравнению Аррениуса, что позволило, представив зависимость константы скорости реакции окисления паров углеводородов от температуры в координатах линейной анаморфозы Ink = f(I/T), рассчитать энергии активации и предэкспоненциальные множители для соответствующих реакций окисления (табл. 1.14). Наряду с этим в исследованном ряду парафиновых углеводородов нарушается принцип более легкого окисления более тя келых углеводородов [11]. По-видимому, в рассматриваемом случае существенную роль в процессе окисления играет структура каталитических центров и их взаимодействие с конкретным видом окисляемого вещества. На наш взгляд, в данном случае следует обратить внимание на близость как удельных энергий активации (отнесенных не к 1 молю, а 1 грамму вещества), так и темпера-ly э окисления н-гексадекана, н-октана и изооктана, у которых значения удельных энергий активации составляют соотвртственно достаточно близкие величины 485, 375 и 396 Дж/г [c.28]

    Во-вторых, на этом примере видны структурные основы высокой специфичности ферментов, в частности стереоспецифичибсти. Так, если бы С-концевая аминокислота была D-изомером, то в рассматриваемом случае в сторону каталитического центра оказался бы нанрав-летшым атом Н, а не группа — NH -- СО —, и каталт1тнческий процесс не смог бы произойти. [c.262]


Смотреть страницы где упоминается термин Каталитический центр: [c.117]    [c.92]    [c.80]    [c.131]    [c.102]    [c.212]    [c.276]    [c.406]    [c.110]    [c.262]    [c.108]   
Принципы структурной организации белков (1982) -- [ c.0 ]

Принципы структурной организации белков (1982) -- [ c.0 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте