Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сила тока, единицы

    Своеобразие роста электролитических осадков металлов затрудняет измерение илотности тока, иными словами, скорости электрохимического процесса. Здесь необходимо различать кажущуюся плотность тока, т. е. силу тока, приходящуюся на единицу геометрической (видимой) поверхности электрода, и истинную плотность тока, равную отношению силы тока к активной поверхности, т. е. к действительной поверхности роста осадка. В процессе образования катодного осадка при неизменной кажущейся илотности тока истинная илотность тока может меняться. [c.455]


    Электрическая энергия определяется тремя факторами — напряжением, силой тока и временем его протекания. Единицы измерения электрической энергии по размерности совпадают с единицами измерения тепловой и механической энергии. Все 36 [c.36]

    В техно-химических расчетах используются, главным образом, только механические, тепловые и электрические параметры свойств и состояния тела (вещества) длина, площадь, объем, масса, вес, сила, давление, мощность, работа, температура, теплоемкость, сила тока, напряжение и т. п. Для измерения и численного выражения этих параметров приняты следующие единицы измерения  [c.7]

    Когда мощность искрового разряда мала, то плотность излучения, приходящегося на единицу поверхности смеси в предпламенной зоне, оказывается недостаточной для достижения требуемой предпламенной фрагментации молекул. В результате смесь не воспламеняется. Существует, таким образом, минимальная мощность искры, при которой происходит воспламенение смеси (рис. 3.12). С ростом мощности искрового разряда (с увеличением воспламеняющей силы тока) выше той, при которой происходит воспламенение смеси стехиометрического состава, создаются более благоприятные условия для воспламенения смесей, отличающихся по составу от стехиометрического. Однако при этом, естественно, существует определенный предел по составу смеси, выше которого смесь не воспламеняется при как угодно большой мощности искры. Считается, что оптимальные условия зажигания смесей в двигателях легкого топлива создаются, когда в течение примерно 1 мс в искровом промежутке выделяется энергия, равная 20—30 МДж. [c.126]

    Так как сила тока I, т, е. количество протекшего в единицу времени электричества, равна произведению числа молей водорода, выделившихся единицу времени, на 2f (г = 2), т. е. [c.623]

    Размерные факторы можно, в свою очередь, разделить на основные и производные. В международной системе единиц (СИ) основными факторами являются длина Ь, масса М, время т, температура Т, сила тока, сила света. [c.131]

    При электролизе сила тока (а следовательно, и количество вещества, получаемого в единицу времени) зависит от разности 15 [c.449]

    Перед использованием прибора для работы в электролизер заливают на /з по высоте 10%-ный раствор серной кислоты, в бюретку — дистиллированную воду. Далее градуируют прибор и вычерчивают кривую зависимости количества воды, выдавливаемой из прибора в единицу времени в миллиграммах, от силы тока в миллиамперах. Дозер присоединяют к боковому отростку реактора встык. При работе дозер должен быть защищен прозрачным щитком из органического стекла. [c.812]


    Основной величиной, характеризующей интенсивность процесса электрокоррозии, является сила тока, стекающего с подземного сооружения в грунт, отнесенная к единице поверхности, т. е. поверхностная плотность тока утечки. Однако практически можно измерить только линейную плотность тока утечки, т. е. силу тока, стекающего с единицы длины подземного трубопровода. [c.52]

    В качестве основной единицы электромагнитных величин принята сила тока в один ампер. [c.182]

    Сила тока I равна суммарному заряду, перенесенному в единицу времени через поперечное сечение проводника  [c.190]

    Один из простых и удобных методов определения точки эквивалентности— нахождение ее по построенной кривой титрования. При этом на оси абсцисс откладывают объем V прилитого стандартного раствора, а на оси ординат соответствующие значения э. д. с. Е ячейки, которые могут быть выражены как в единицах напряжения (мВ, В), так и в других условных единицах [pH, делениях шкалы ( ) и т. п.]. При некомпенсационном методе титрования на оси ординат вместо э. д. с. откладывают силу тока /. Точку эквивалентности находят по перегибу интегральной кривой титрования (рис. 5.1,а). [c.239]

    Так как скорость химических превращений определяется количеством вещества, прореагировавшего в единицу времени, скорость электрохимической реакции пропорциональна силе тока  [c.121]

    При таком способе измерений отношение плеч k/h отличается от единицы не более чем на 20%, что сводит к минимуму погрешности опыта. Если концентрация растворов весьма мала, то минимальная сила тока наблюдается при перемещении подвижного контакта на некотором участке линейки. В этом случае находят границы участка и для расчета берут среднее значение. Зная константу сосуда, вычисляют удельную электрическую проводимость любого электролита по уравнению (XIV. 19). При очень малых концентрациях раствора электрическая проводимость воды становится сравнимой с таковой электролита. [c.192]

    Мерой скорости электрохимических реакций является плотность тока, т. е. количество электричества, проходящее в единицу времени через единицу поверхности или — иначе — сила тока на единицу поверхности. [c.291]

    Электрическая проводимость тел оценивается количественно в специальных единицах, называемых сименс (сокращенно См), и обозначается символом G. 1 См — это электрическая проводимость проводника, между концами которого создается напряжение 1 В при силе тока 1 А. Электрическая проводимость тела пропорциональна площади его поперечного сечения S и обратно пропорциональна его длине I [c.261]

    Электрическим сопротивлением (на участке цепи для неизменя-ющегося тока) называется отношение электрического напряжения на концах участка к силе тока. Единица измерения электрического сопротивления — ом. Удельное электрическое сопротивление р — это электрическое сопротивление, приходящееся на единицу длины проводника при площади сечения проводника, равной единице. Единица измерения ом-м. Кроме того, применяют внесистемную единицу ом-мм 1м. [c.160]

    Плотностью тока называется сила тока, приходящаяся на единицу поверх- остч электрода. [c.427]

    Колнчестиенное определение основано на измерении высоты полярографической полны, т. е. значении предельного тока. По мере увеличения напр 5жеиия скорость восстановления ионов определяемого металла на катоде непрерывно возраст,чет и непосредственно прилегающий к катоду слон раствора все более и более обедняется этими ионами. В конце концов система достигнет такого состояния, ири котором количество иоиов, разряжающихся в единицу времени на катоде, равно количеству ионов, которые подходят к катоду в результате диффузии нз более отдаленных частей раствора. Начиная с этого момента дальнейшее увеличение силы тока с [c.453]

    Характер осадка и условия его формирования во времени ири постоянной силе тока (или ири заданном потенциале) зависят не только от природы металла, но и от состава раствора и присутствующих в нем примесей. Примеси поверхностно-активных веществ, а также различных окислителей (например, растворенного кислорода) влияют на кинетику электровыделения металлов. В зависи-мостн от степени чистоты раствора и 1 рнроды примесей могут меняться характер роста кристаллов, число центров кристаллизации, возникаюнщх за единицу времени на единице поверхности катода, значение поляризации ири данно] г илотности тока, характер ее [c.455]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]


    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]

    В стационарных условиях сила тока, проходящего через раствор, определяется количеством грамм-ионов , проднффунди-ровавших к электроду в единицу времени. Согласно закону Фика, это количество равно [c.609]

    ИОН стремится двигаться в одну сторону, а окружающая его ионная атмосфера — в нротиаоположиую, вследствие чего направленное перемещение иона замедляется, а следовательно, уменьшается число ионов, проходящих через раствор в единицу времени, т. е. сила тока. Чем больше копцеитра сия раствора, тем сильнее проявляется тормозящее действие ионной атмосферы на электропроводность раствора. Значення степе [и диссоциации хлорида калия, вычисленные при 18 °С по электропроводности его растворов, показывают. что с ростом ко1щентрацнн а падает  [c.241]

    Плотностью тока называется сила токя, отнесенная к единице поверхности электрода. Ее выражают обычно в амперах на квадратный дециметр. [c.447]

    Из уравнения (35) можно сделать следующие основные выводы. Полная защита будет при силе коррозиоргного тока равной нулю. Так как ко ффициент h является для каждого отдельного случая сравнительно постоянной величиной, меньше единицы, то, следовательно, степень защиты будет тем больше, чем больше сила защитного слоя вплоть до значения, при котором произведение Ып достигает величины, равной силе тока коррозии /д без защиты протектором. [c.303]

    При электролизе и эксплуатации химических источников тока через электрохимические системы протекает электрический ток. При этом равновесное состояние Ох + ге" Нес , существующее на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция может идти в катодном Ох + + 26 Нес или анодном Нес1-> Ох + ге направлениях. Мерой скорости электрохимической реакции является плотность тока — сила тока, отнесенная к единице площади поверхности электрода. Если в уравнении (162.3) массу вещества, участвующего в реакции, выразить в г-ионах, то скорость реакции будет [c.498]

    В системе Гаусся единицы эаряда, напряженности поля, электрического потенциала, смещения, силы тока, сопротивления, проводимости, емкости и диэлектрической проницаемости совпадают с соответствующими единицами системы GSE, Единицы же количества магнетизма, напряженности магнитного поля, магнитной проницаемости, магнитной индукции, магнитодвижущей силы, магнитного сопротивления, магнитного потока и индуктивности совпадают с соответствующими единицами системы QSM. [c.41]

    По мере возрастания потенциала электрода число частиц, реагирующих в единицу времени, возрастает, при этом растет сила тока в цепи, а их концентрация в приэлектродном слое убывает по сравнению с концентрацией в растворе. Возникает градиент концентрации, являющийся двил<ущей силой диффузионного переноса частиц из объема раствора к поверхности электрода. При достаточном увеличении потенциала наступает момент, когда все частицы, поступающие к электроду за счет диффузии, немедленно разряжаются, так что их концентрация в приэлектродном слое становится весьма мало отличной от нуля. Начиная с этого момента, дальнейшее увеличение силы тока становится невозможным. Электрод приходит в состояние так называемой концентрационной поляризации. [c.274]

    Кроме того, меняется форма полярограммы. Истощение в ходе электролиза электродноактивного вещества в приноверх-иостном слое приводит к существенному снижению количества его, поступающего из объема раствора в зону реакции в единицу времени. По этой причине сила тока достигает максимального значения, затем уменьшается, а полярограмма приобретает вид кривой с максимумом (пиком 1 ) (рис. 5.16). [c.288]

    Сила тока влияет на характер образующегося осадка металла. В данном случае имеет значение не количество электричества, а плотность тока на катоде, т. е. количество ампер на единицу поверхности катода. При очень малых плотностях тока металл ииогда осаждается в виде крупных кристаллов, которые растут отдельными ветв ши. Такие ветви металла легко обрываются, когда электрод вынимают из раствора. [c.197]


Смотреть страницы где упоминается термин Сила тока, единицы: [c.278]    [c.430]    [c.209]    [c.388]    [c.427]    [c.275]    [c.269]    [c.176]    [c.566]    [c.210]    [c.20]    [c.392]    [c.51]    [c.472]    [c.288]    [c.203]   
Аккумулятор знаний по химии (1977) -- [ c.98 ]




ПОИСК







© 2025 chem21.info Реклама на сайте