Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос заряженных частиц

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]


    На границе воздух — раствор из-за определенной ориентации диполей растворителя возникает некоторый скачок потенциала % — так называемый поверхностный потенциал. Поэтому энергетический эффект, сопровождающий перенос заряженной частицы через границу воздух — раствор (из точки 2 в точку 3 на рис. 5), отражает не только ион — дипольное взаимодействие, но и электрическую работу, которая для моля ионов с зарядом 2,60 равна Л A2 eoX=2 f) Изменение свободной энергии, обусловленное только взаимодействием ионов с диполями растворителя и отнесенное к молю ионов, называется химической энергией сольватации ДО з " . Таким образом, между реальной и химической энергиями сольватации существует [c.25]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Впервые закономерности стадии разряда — ионизации были изучены на примере разряда ионов водорода НаО++е —> Надс+НаО. Теория, описывающая кинетические закономерности переноса заряженных частиц через границу раздела фаз, называется теорией замедленного разряда. [c.229]

    Условия электрохимического равновесия могут быть выведены из общих условий термодинамического равновесия, если работу переноса заряженных частиц записать в виде отдельного члена  [c.208]


    Переход незаряженных частиц из одной фазы (1) в другую (2) обусловлен неравенством химических потенциалов частиц в этих фазах. При этом работа переноса 1 моль соответствует разности химических потенциалов Ц и Если через границу раздела фаз переносятся заряженные частицы, то кроме работы на преодоление сил химического взаимодействия необходимо произвести дополнительную работу против электрических сил. Мерой работы будет служить разность электрохимических потенциалов  [c.468]

    Равновесие нейтральных частиц в двух фазах характеризуется равенством их химических потенциалов. Разность химических потенциалов вещества в двух фазах равна работе перенесения одного моля нейтральных частиц из одной фазы а другую. Установим условие равновесия для заряженных частиц в двух фазах. При переносе заряженных частиц из одной фазы в другую кроме химической работы совершается также электрическая работа. Электрическое состояние заряженной частицы внутри фазы характеризуется так называемым электрохимическим потенциалом ft .  [c.274]

    Поскольку в диэлектриках практически отсутствуют свободные ионы и слабо связанные с атомными ядрами электроны, способные перемещаться под влиянием электрического поля, постольку они не проводят постоянного тока. Для прохождения переменного тока переноса заряженных частиц не требуется — вполне достаточно небольших колебаний зарядов вблизи некоторого положения равновесия. Смещение электронов, атомных ядер, повороты постоянных диполей в диэлектрике под влиянием электрического поля по сути дела и представляют собой подобные колебания зарядов, которые создают так называемые токи смещения. [c.233]

    Отсюда работа переноса заряженной частицы из фазы 1 в фазу 2 запишется в виде выражения [c.413]

    Как видно из рис. 1, для, осуществления электрохимической реакции необходима некоторая система — электрохимическая цепь. Существенные элементы такой цепи — металлические (или полупроводниковые) электроды, проводник второго рода (раствор электролита, его расплав или твердый электролит) и границы раздела фаз между металлом и электролитом, между двумя различными металлами и между двумя различными электролитами. Закономерности протекания тока в электрохимической цепи, а также закономерности электрохимического равновесия определяются свойствами всех этих элементов. Строение металлов и полупроводников, а также их электропроводность служат объектом изучения физики, а не химии. Объекты изучения электрохимии — ионные системы (проводники второго рода) и границы раздела фаз с точки зрения их структуры и механизма переноса заряженных частиц. [c.5]

    Кинетика процесса переноса заряженных частиц через границу раздела полупроводник— раствор обладает рядом особенностей, которые определяются электронной структурой полупроводников. [c.292]

    На участке / (слабое поле) имеет место неполный сбор заряженных частиц и значительная часть их успевает рекомбинировать. При постоянной скорости образования и рекомбинации заряженных частиц в детекторе, работающем на этом участке характеристики, и постоянном напряжении на электродах ток детектора определяется скоростью переноса заряженных частиц в направлении поля. Скорость зарядов в направлении поля характеризуется так называемой подвижностью,, которая численно равна скорости, приобретаемой зарядом в поле напряженностью 1 В/см. Подвижность пропорциональна величине заряда и обратно пропорциональна массе частиц. [c.49]

    Излагая современное учение о кинетике электрохимических реакций, авторы более подробно останавливаются на закономерностях двух основных стадий электродных процессов стадии подвода реагирующих частиц к поверхности электрода и стадии разряда — ионизации, в которой происходит перенос заряженной частицы через границу электрод — раствор. В этом пособии достаточно полно представлены современные экспериментальные методы электрохимической кинетики, физические основы квантовомеханической теории электродных процессов, а также отражены такие вопросы, которые слабо освещены в литературе, например роль работы выхода электрона и энергии сольватации в электрохимической кинетике и др. [c.3]

    Хотя гальвани-потенциал на границе металл — раствор фр не поддается экспериментальному определению, некоторые выводы об отдельных составляющих этой величины могут быть сделаны при анализе процесса установления электрохимического равновесия. Если на границе фаз аир возможно протекание процессов с переносом заряженных частиц из одной фазы в другую [c.24]


    В данной книге не рассматриваются общие свойства растворов и методы определения коэффициентов активности, а излагаются только те особенности растворов электролитов, которые обусловлены присутствием заряженных частиц. Далее, условия электрохимического равновесия выводятся обобщением соотношений химической термодинамики на системы, в которых помимо прочих интенсивных факторов нужно дополнительно учитывать электрическое поле. Наконец, в качестве основы кинетических закономерностей процесса переноса заряженных частиц через границу раздела фаз используются известные уравнения теории активированного комплекса, в которых анализируется физический смысл энергии активации и концентрации реагирующих веществ в специфических условиях электродной реакции. [c.6]

    Стадия массопереноса присуща любым гетерогенным процессам. В то же время стадия перехода заряженных частиц (электронов или ионов) через границу электрод — раствор (стадия разряда — ионизации) является специфически электрохимической стадией. В настоящее время доказано, что стадия разряда — ионизации любого электродного процесса протекает с конечной скоростью. Теория, описывающая кинетические закономерности переноса заряженных частиц через границу раздела фаз, называется теорией замедленного разряда. [c.184]

    Предположения о медленности электрохимического акта разряда высказывались еще в конце XIX в. Однако впервые в количественной форме применительно к конкретной реакции электрохимического выделения водорода теория замедленного разряда была сформулирована в 1930 г. М. Фольмером и Т. Эрдей-Грузом. В 1933 г. эта теория была усовершенствована А. Н. Фрумкиным, который учел влияние электрического поля двойного слоя на перенос заряженных частиц. [c.184]

    На границе воздух — раствор из-за определенной ориентации диполей растворителя возникает некоторый скачок потенциала X —так называемый поверхностный потенциал. Поэтому энергети>-ческий эффект, сопровождающий перенос заряженной частицы [c.29]

    В правой части теперь находятся только дифференциалы независимых переменных. При переносе заряженных частиц в поле с разностью потенциалов ф полный потенциал -го компонента [c.74]

    Направление работы переноса заряженных частиц, отвечающей определенному значению [c.207]

    Величина (г, называется электрохимическим потенциалом частицы I в фазе а, а ф отвечает разности пстенциалов между точкой внутри фазы и бесконечно удаленной точкой в вакууме ее называют внутренним потенциалом. Работа переноса заряженной частицы из фазы а в фазу равна разности электрохимических потенциалов  [c.24]

    Впервые на возможность медленного протекания электрохимического акта разряда еще в 1880 г. указал Р. А. Колли. Для обоснования и развития этой идеи большое значение имели работы М. Леблана (1910), Н. А. Йзгарышева (1915) и Дж. Батлера (1924). Впервые в количественной форме теория замедленного разряда была сформулирована в 930 г. М. Фольмером и Г. ЭрдейТрузом, которые, однако, не учли влияние двойного электрического слоя на перенос заряженных частиц через фазовую границу. Этот существенный недостаток теории был устранен в 1933 г. А. Н. Фрумкиным. Для вывода основного уравнения теории замедленного разряда А. Н. Фрумкин использовал соотношение Бренстеда, проведя аналогию между разрядом иона НдО и переносом протона от кислоты к основанию в реакциях нейтрализации. Развивая эти представления, Ю. Гориути и М. Поляни в 1935 г. пред- [c.243]

    Уравнение (71) определяет так наываемый реальный потенциал а частицы I в фазе а, который можно измерить и который равен по величине, но обратен по знаку работе выхода частицы I из фазы а—Шг . Согласно уравнению (70) электрохимический потенциал ц, можно определить как суммарную работу переноса заряженной частицы / из бесконечности в точку внутри фазы а. Химический потенциал представляет собой энергию взаимодействия г-й частицы внутри фазы а с частицами, образующими эту фазу. Электрохимический ц, химический р, и реальный а потенциалы имеют размерность энергии (Дж, эВ) потенциалы — внутренний ф, поверхностный у и внешний 1[), размерность электрического потенциала (В). [c.24]

    Помимо контроля скорости реакции диффузионным процессом, характерного для обратимых реакций, существует контроль переносом заряженных частиц (электронов или ионов) через границу раздела электрод—раствор. В этом случае электродную реакцию называют необратимой. К необратимым процессам урапнепие Нернста неприменимо, поскольку на значительной части поляризационной кривой поляризация электрода при протекании тока не связана с изменением концентрации электродно-активного вещества в приэлектродной области, последнее просто отсутствует. Рассмотрение теории замедленного разряда приводит к следующему выражению, связывающему потенциал электрода и силу поляризующего тока [c.277]

    Поскольку С-потенциал глобул латекса обычно отрицателен, то для хлорида кальция, который обычно применяют при ионном отложении и для которого-коэффициент диффузии положительного иона меньше коэффициента диффузи отрицательного, движение латексных частиц всегда направлено к форме. Само-явление переноса заряженных частиц под действием электрического поля, образуемого при диффузии электролита, как уже было указано, авторы назвал диффузиофорезом. [c.219]

    Исторически строение металлов и полупроводников, а также закономерности их электропроводности изучались физиками, а не химиками. Поэтому объектами изучения электрохимии остаются ионные системы (проводники второго рода) и границы раздела фаз с точки зрения их структуры и механизма переноса заряженных частиц. Отсюда вытекает следующее определение теоретической электрохимии электрохимия — то наука, которая изучает физико-химические свойства ионных систем, а также процессы и явления, происходящие на границах раздела фаз с участием заряженных частиц. В соответствии с этим определением в электрохимии можно выделить два больших раздела ионику и электродику. Первый из них занимается изучением физико-химических свойств ионных систем, второй — анализом явлений, протекающих на границе электрода и электролита. [c.6]

    Полный потенциал (74) —сумма обобщенных сил для взаимно зависимых координат состояния Ц = Л1им + — для переноса массы во внешнем гравитационном поле, л = лх м-I-г/ ф — электрохимический для переноса заряженных частиц и т. п. [c.313]


Смотреть страницы где упоминается термин Перенос заряженных частиц: [c.227]    [c.182]    [c.173]    [c.2]    [c.146]    [c.155]    [c.2]    [c.146]    [c.251]    [c.345]   
Биофизика (1983) -- [ c.22 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Заряд частицы ВМС

Перенос заряда

Перенос заряженных частиц через мембраны

Частицы заряженные



© 2025 chem21.info Реклама на сайте