Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущая сила диффузионной

    Скачки потенциалов на границах фаз 365 2. Электродвижущая сила гальванического элемента 368 3. Типы электродов 371 4. Стандартные электродные потенциалы и правило знаков 373 5. Концентрационные элементы. Диффузионный потенциал 375 6. Зависимость ЭДС от температуры 377 7. Измерение некоторых физико-химических величин методом ЭДС 380 8. Электродные процессы 382" [c.400]


    При этом за счет разности с и с" в растворе возникает диффузионный потенциал, а следовательно, появляется электродвижущая сила поляризации, величина которой определится (в данном случае [c.252]

    Электрохимическая цепь находится в равновесии, если на всех межфазных границах достигнуто равновесие и исключен диффузионный потенциал. В этом случае разность потенциалов между концами проводников первого рода, присоединенных к электродам, называется электродвижущей силой (ЭДС) гальванического элемента. [c.218]

    Электродвижущая сила диффузионного элемента бд возникает на границе раздела анолита и католита из-за различия чисел переноса аниона /а и катиона [c.45]

    ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ, ЭЛЕКТРОДВИЖУЩИЕ СИЛЫ, ДИФФУЗИОННЫЕ ПОТЕНЦИАЛЫ, ПОТЕНЦИАЛЫ НУЛЕВЫХ ЗАРЯДОВ, ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ, АККУМУЛЯТОРЫ [c.222]

    V. Электродные потенциалы, электродвижущие силы, диффузионны [c.361]

    Вальтер Фридрих Нернст (1864—1941)—немецкий физико-химик, в 1887—1889 гг. работал ассистентом В. Оствальда в Лейпциге, с 1894 г. профессор Геттингенского университета. По его инициативе в Геттингене в 1896 г. был построен Институт физической химии и электрохимии. Разработал теорию электролитического растворения металлов и электродных потенциалов и теорию диффузионных потенциалов. Впервые объяснил причину и механизм возникновения электродвижущих сил. В 1893 г. опубликовал учебник Теоретическая химия с точки зрения закона Авогадро и термодинамики , выдержавший много изданий (15-е издание вышло в 1926 г.). Лауреат Нобелевской премии (1920), [c.315]

    Электродвижущая сила концентрационных элементов, как отмечалось, зависит от диффузионного потенциала, возникающего на границе двух растворов. Величина диффузионного потенциала может достигать нескольких милливольт, что существенно изменяет значения электродвижущей силы концентрационных элементов. Точность измерений э. д. с. с помощью потенциометра составляет 0,1—0,01 ж, а погрешность, привносимая в результате возникновения диффузионных потенциалов, часто лежит в пределах нескольких милливольт. Поэтому особое внимание в электрохимии было уделено концентра- [c.85]

    Пользуясь методом измерения электродвижущих сил, точные результаты можно получить, если в изучаемых элементах диффузионный потенциал будет отсутствовать (элементы без переноса). С этой целью можно использовать элемент, составленный из хлорсеребряного и водородного электродов, опущенных в один и тот же раствор соляной кислоты  [c.140]

    Так как стандартные потенциалы Фси +уси равны между собой, то электродвижущая сила такой цепи (без учета диффузионного потенциала) будет определяться в конечном итоге только концентрацией (активностью) ионов в обоих растворах, т. е.  [c.180]


    Электродвижущая сила исследуемой цепи, равная диффузионному потенциалу, измерялась с помощью двух каломельных электродов. Результаты измерений и расчетов чисел переноса по известным уравнениям приведены в табл. 7.1. [c.122]

    Последовательность соединения проводников в Э. ц. изображают схемой М(раствор I раствор П1 М 1М, где М и М - металлы, сплошные вертикальные черточки указывают границы раздела фаз, а двойная вертикальная пунктирная черта указывает на то, что диффузионный потенциал между р-рами I и II отсутствует (элиминирован) (в противном случае используют одинарную пунктирную черту). Отрицат. электрод располагают слева. Разность потенциалов на концах правильно разомкнутой Э. ц. наз. электродвижущей силой цепи (эдс). Э. ц. строго равновесны лишь тогда, коща они не содержат границы двух электролитов и когда эдс цепи скомпенсирована разностью потенциалов от внеш. источника тока. [c.463]

    Разность равновесных потенциалов положительного и отрицательного электродов гальванического элемента равна электродвижущей силе этого элемента, если диффузионный потенциал устранен  [c.58]

    Таким образом, потенциал электрода определяют как э. д. с. элемента, одним из электродов которого является исследуемый, а другим - стандартный водородный электрод. Поскольку электродный потенциал представляет собой электродвижущую силу, то для него используют обозначение Е. Чтобы исключить неоднозначность в понимании смысла этой величины, обычно применяют индексы. Следует подчеркнуть, что данное определение электродного потенциала справедливо, если отсутствует диффузионный потенциал. [c.107]

    В начале настоящей главы излагаются основные принципы метода электродвижущих сил, описываются условные обозначения для гальванических элементов, а также условия, касающиеся знаков электродвижущей силы и стандартных электродных потенциалов. Затем излагается термодинамика гальванических элементов с жидкостными соединениями и без жидкостных соединений, причем это изложение связывается с результатами исследований растворов. Далее подробно рассматриваются гипотетический потенциал жидкостного соединения, понятие об электрическом потенциале на границе раздела фаз, проблема индивидуальных химических потенциалов и активностей ионов. В конце главы обсуждается вопрос о тех ограничениях, которые возникают при использовании элементов с жидкостными соединениями из-за наличия диффузионных потенциалов, а также описывается удобный способ устранения последних. [c.285]

    Электродвижущая сила концентрационного элемента определяется по формуле (12) и равняется разности потенциалов двух от-отдельных электродов ( 1 и 2), если пренебречь значением скачка потенциала ( 3) в месте соприкосновения растворов двух различных концентраций (см. ниже о диффузионном потенциале). [c.295]

    Е1 (У)—электродвижущая сила элемента, которая может быть измерена непосредственно, Е/ обычно называют диффузионным потенциалом. Что касается гипотетических парциальных свободных энергий ионов в правой части уравнения (55), то необходимо вспомнить положения гл. I, в которой подчеркивалось, что термодинамика позволяет находить парциальные свободные энергии, активности и т. д. только для молекулярных компонентов, в том смысле, как их определяет Гиббс, и не дает возможности вычислять эти величины для отдельных видов ионов. [c.296]

    Выше было показано, что путем измерения электродвижущих сил элементов с жидкостным соединением можно определять парциальные молярные свободные энергии или линейные комбинации гипотетических свободных энергий ионов. Этот термодинамический результат имеет очень существенное значение для изучения диффузионного потенциала. Из уравнений (55) и (64) получаем соотношение [c.298]

    Недавно были предложены новые значения Ерн для различных типов каломельных электродов, причем они, повидимому, включают большую часть диффузионного потенциала. Эти значения могут быть весьма удобны и полезны для определения констант диссоциации и других констант равновесия, где не требуется очень высокой точности. Эти значения Ерн были определены путем замены исследуемых растворов в элементе I буферными растворами кислот, для которых константы диссоциации были точно определены с помощью кондуктометрического метода или из данных по электродвижущим силам элементов без жидкостного соединения Определение величин Ерн можно проиллюстрировать на примере буферного раствора, содержащего слабую кислоту НА и ее натриевую соль. Если представляет собой отрицательный логарифм термодинамической константы диссоциации этой кислоты, то, согласно уравнению (76) и уравнению (14) гл. VII, получается выражение [c.303]

    Фигурирующий в (5.8.23) напор электрического потенциала Аф называют обычно диффузионным или мембранным потенциалом. Он не поддается экспериментальному определению, но входит как составная часть в измеряемую на опыте электродвижущую силу гальванического элемента, наряду со скачками электрических потенциалов на границах раздела фаз. Из (5.8.23) имеем [c.321]


    Вычисление коэффициента активности на основании измерения электродвижущих сил. Коэффициенты активности в растворах электролитов могут быть определены разными методами, но наиболее употребительным из них является измерение э. д. с. соответствующих гальванических элементов. С этой целью составляют элемент без жидкостных границ, чтобы диффузионный потенциал отсутствовал. В таком элементе один из электродов обратим по отношению к катиону, а другой—по отношению к аниону. [c.314]

    Электродвижущая сила этой цепи определяется алгебраической суммой трех потенциалов eJ— на границе металл—раствор I, Сз —на границе металл — раствор И и —диффузионного потенциала на границе двух растворов. Потенциал на границе металл — металл в такой концентрационной цепи равен нулю, так как оба электрода состоят из одного и того же металла. Величина диффузионного потенциала определяется разностью в подвижности [c.759]

    Если элиминирован диффузионный потенциал, электродвижущая сила цепи определяется отношением активности. оно В водорода  [c.767]

    Электродвижущая сила этой цепи определяется алгебраической суммой трех потенциалов е,—на границе металл—раствор I,eg—на границе металл—раствор II и вд—диффузионного потенциала на границе двух [c.461]

    Разностью потенциалов 3 на месте соприкосновения двух электролитов внутри элемента [диффузионный потенциал) и тем более разностью потенциалов Е4 на месте соприкосновения двух металлов [контактный потенциал) большей частью можно пренебречь, так как они незначительны по сравнению с полной электродвижущей силой всего элемента .  [c.283]

    Покажем теперь, каким образом можно в одном простом случае подсчитать электродвижущую силу гальванической цепи с диффузионным потенциалом. [c.176]

    В основном такие же соображения используются при вычислении электродвижущих сил более сложных гальванических цепей с диффузионными потенциалами, в которых в переносе электричества участвует несколько ионов и оба электрода изготовлены из различных материалов. [c.179]

    На практике доля, которую вносит диффузионный потенциал в суммарную электродвижущую силу гальванической цепи, может быть уменьшена двумя способами. [c.179]

    С увеличением плотности тока возрастают перенапряжение на аноде и катоде, потери напряжения в электролите, диафрагме и металлических проводниках. Так как с ростом плотности тока увеличивается газонаполнение электролита, потери напряжения в электролите возрастают в большей мере, чем увеличивается плотность тока. Потери напряжения в металлических деталях и диафрагме пропорциональны плотности тока. Перенапряжение на электродах возрастает пропорционально логарифму плотности тока, однако абсолютная величина роста перенапряжения невелика. Основное значение для роста напряжения на ячейке с увеличением плотности тока имеют потери напряжения в электролите и диафрагме. С ростом плотности тока возрастает разница концентраций электролита у катода и анода и величина электродвижущей силы концентрационной и диффузионной поляризации, однако абсолютное значение этих величин тоже невелико. [c.59]

    Электродвижущей силой (э.д.с.) системы будет потенциал правого электрода при условии, что потенциал левого электрода равен нулю. Электродный потенциал — это э.д.с. электрохимической системы, в которой справа расположен данный электрод, а слева — стандартный водородный электрод. Диффузионный потенциал должен быть при этом элиминирован. Э. д. с. и электродный потенциал определяются поэтому одним и тем же уравнением [c.146]

    Электрическая схема такой установки приведена на рис. 83, Измерения проводят в электролитической ячейке (электролизере) 3, имеющей два электрода, один из которых анод, а второй — исследуемый катод 1. Электроды поляризуют постоянным током от аккумулятора 4 через делитель напряжения (реостат) 5, причем силу тока измеряют точным миллиамперметром 7. Изучаемый электрод 1 соединен при помощи электролитического ключа и промежуточного сосуда с электродом сравнения 2. Электродвижущую силу системы измеряют с помощью обычной потенциометрической схемы, т. е. реохорда 9 с нормальным элементом 10 и гальванометром 11. В качестве электрода сравнения чаще всего применяют каломельный, хлорсеребряный или ртутноокисный полуэлементы. Промежуточный сосуд и электролитический ключ заполняют для снижения диффузионного по- [c.246]

    Еу—электродвижущая сила жидкостного соединения (диффузионный потенциал). Еддп, —составляющая электродвижущей силы, обусловленная присутствием дополнительных членов высшего порядка. [c.8]

    Существуют два типа жидкостных соединений, с которыми обычнО приходится иметь дело при электрохимических исследованиях гомоионные соединения, образующиеся при соприкосновении растворов, различающихся только концентрацией ионов, и гетероионные соединения, возникающие при соприкосновении растворов, содержащих различные ионы в одинаковых или разных концентрациях. Как было показано в 6, в случае гомоион-ных соединений диффузионные потенциалы представляют собой величины, поддающиеся точному термодинамическому определению [уравнение (66)], и поэтому результаты, полученные помощью элементов, содержащих такие соединения, можно использовать для термодинамических расчетов (гл. XI, 9, и гл. XII, 1). В настоящем параграфе будет рассмотрено применение элементов с гетероионными жидкостными соединениями < Измерение электродвижущих сил этих элементов находит широкое применение при различных способах определения pH и может при соблюдении некоторых особых условий давать результаты, имеюнще термодинамический смысл. Эти условия носят экспериментальный характер и применяются для устранения диффузионных потенциалов, а не для вычисления их величии. [c.302]

    Практически устранение диффузионного потенциала, которое достигается в элементе IV путем уменьшения величин ж гпц, можно сделать абсолютно полным, если найти предельную величину некоторой функции от Е и от концентраций при стремлении значений ж к нулю как к своему пределу 1. Экспериментальное определение этой предельной величины заключается в измерении электродвижущих сил ряда элементов, содержащих растворы переменного состава, но с постоянной ионной силой, что достигается добавлением электролита, который не участвует в электродных реакциях [35]. При экстраполяции до нулевых концентраций тех ионов, которые имеются лишь в одном из соприкасающихся растворов, диффузионный потенциал исчезает. Условия экстрапо.пяции были проанализированы Оуэном и Бринкли [34в]. Влияние инертного электролита исключается путем последующей экстраполяции до нулевой ионной силы. Данный метод можно проиллюстрировать на примере следующего элемента  [c.307]

    Надежность экстраполяции, с помощью которой исключаются диффузионные потенциалы, может быть проверена путем сравнения вычисленных термодинамических величин с величинами, полученными другими независимыми методами. В тех случаях, когда подобное сопоставление / Возможно, получается вполне удовлетворительное совпадение [35, 36]. Разность между величинами стандартных потенциалов электродов серебро-хлористое серебро и серебро-бромистое серебро, полученная из электродвижущей силы элемента VII, в точности совпадает с разностью между соответствующими величинами, найденными непосредственно из электродвижущих сил элементов без жидкостного соединения. Было также обнаружено, что результаты, полученные с помощью элементов V и VI, превосходно совпадают друг с другом, хотя коэффициенты наклона экстраполиру,емых прямых для этих двух систем различаются по знаку и по порядку величины. Стандартный электродный потенциал серебра можно вычислить по уравнению [c.309]

    Применяя уравнение Льюиса и Сарджента [4] для диффузионных потенциалов и подставляя в это уравнение средние активности ионов, Льюис, Брайтон и Себастьян [5] получили для величины при 25° значение 1,012-10-1 , хорошо совпадающее со значением 1,008-10 , найденным путем измерений электродвижущих сил элементов без жидкостных соединений. [c.450]

    Для определения диффузионного потенциала Влчек [2] рекомендует метод экстраполяции, примененный им при проведении исследований в 17 М Н25 0 4. Он измерял электродвижущую силу элемента [c.437]

    Поверхностный потенциал существенно зависит от освещения. Молекулярные кристаллы рассматривались отчасти уже в предыдущем разделе, где была показана возможность образования демберовской разности потенциалов, которая может быть обнаружена при любых измерениях поверхностного потенциала. Для наших целей емкостный метод Бергмана [14] приемлем для изучения диффузионной фото-электродвижущей силы, хотя он и не позволяет определять саму величину поверхностного потенциала. [c.672]


Смотреть страницы где упоминается термин Электродвижущая сила диффузионной: [c.250]    [c.316]    [c.85]    [c.303]    [c.306]    [c.438]    [c.197]    [c.302]    [c.266]    [c.181]   
Техно-химические расчёты Издание 4 (1966) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Термодинамический расчет электродвижущих сил обратимых гальванических цепей (7 8). 5. Уравнение диффузионного потенциала и электродвижущей силы концентрационной цепи с жидкостной границей

Электродвижущая сила ЭДС



© 2024 chem21.info Реклама на сайте