Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса правило фаз для дисперсных систем

    Такое промежуточное положение ультрамикрогетерогенных систем определяет некоторую особенность в применении к ним правила фаз Гиббса. Если необходимо обратить внимание на гетерогенность, т. е. на наличие поверхности в дисперсной системе, то пользуются соотношением (II. 149), в котором учитывается отдельно дисперсная фаза и соответственно дисперсность  [c.209]


    Перемещаясь относительно дисперсионной среды, частицы дисперсной фазы встречаются друг с другом и могут при этом объединяться в частицы более крупного размера. Такое объединение, как правило, выгодно, так как приводит к уменьшению поверхности раздела фаз и тем самым к уменьшению избыточной поверхности энергии Гиббса. Слипание частиц называют агрегацией. Этот процесс способствует расслоению дисперсной системы, так как укрупнение частиц дисперсной фазы приводит к уменьшению кинетической устойчивости. Способность системы противостоять объединению частиц дисперсной фазы называют агрегативной устойчивостью дисперсной системы. Агрегацию частиц коллоидного раствора, приводящую к потере кинетической устойчивости и осаждению дисперсной фазы, называют коагуляцией. [c.321]

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Четкую границу между лиофильностью или лиофобностью коллоидных систем не всегда можно установить. Так, золь кремниевой кислоты устойчив в изоэлектрическом состоянии. Гидрозоли кремниевых кислот, гидроксидов железа или алюминия при коагуляции удерживают большое количество воды и образуют студнеобразные системы. В то же время студнеобразный крахмал в водной среде при нагревании переходит в золь, обладающий многими свойствами гидрофобных систем. В подобных случаях часто невозможно провести границу между гетерогенной и гомогенной системами, и правило фаз Гиббса оказывается неприменимым. Поэтому для лиофильных коллоидных систем понятия дисперсной фазы>, дисперсионной среды>, золя и других условны, в той же мере, как понятие раствор для лиофобных систем. [c.157]

    Гетерогенные системы, состоящие или из газа и капель жидкости, или из газа и взвешенных твердых частиц, называют соответственно туманом и дымом (пылью) и объединяют под одним общим названием аэрозоли [5]. Аэрозоли относятся к такой области равновесий многофазных систем, когда вследствие относительно большой развитой поверхности дисперсных частиц повышается роль их поверхностной энергии как отдельной степени свободы в уравнении для правила фаз Гиббса. Чем мельче взвешенные частицы в газе, тем [c.111]

    В заключение следует сказать несколько слов о современных представлениях, развиваемых академиком Дубининым и его учениками . Согласно этим представлениям, понятие удельной поверхности с ростом дисперсности вырождается и не применимо к высокодисперсным адсорбентам, например углям, где половина атомов С свободно контактирует с адсорбатом. Понятие границы раздела фаз (без которого не имеет смысла 5о) исчезает (см. главу I) в таких системах, и они с большим основанием могут трактоваться как гомогенные. В этом случае адсорбент может рассматриваться как один из компонентов, изменяющих, в процессе адсорбционного взаимодействия, свой химический потенциал На. Термодинамическая трактовка, основанная на этих представлениях, приводит авторов к обобщенному уравнению, которое дает два частных решения. Для случая макропористых систем, где адсорбент является лишь источником силового поля, не изменяясь в процессе адсорбции, Д Иа = О, 5 = о и решение сводится к уравнению адсорбции Гиббса. Для другого случая— микропористой системы, 5о = О, А 1а ф 0. При этих условиях решением оказывается уравнение Гиббса—Дюгема, применимое к гомогенным объемным фазам. Концепция вырождения о хороша согласуется с возможностью гомогенной трактовки дисперсных систем, рассмотренной нами при обсуждении правила фаз. Эти представления требуют дальнейшего развития, поскольку адсорбент не является обычным компонентом, ввиду жесткой локализации его в определенной части системы, однако направление это несомненно весьма перспективно, особенно для понимания сущности дисперсного состояния. [c.168]

    Подводя итог, можно сделать вывод, что дисперсность является самостоятельным и полноправным термодинамическим параметром системы, а для дисперсных систем правило фаз Гиббса принимает следующий вид  [c.101]

    Необходимо отметить, что в настоящем разделе рассматривается влияние дисперсности на термодинамические свойства однокомпонентных систе.м, что фактически означает влияние количества фазы на ее свойства. Этот вопрос не является тривиальным, так как в определенной мере противоречит самому понятию фазы, которое в термодинамике относится к макроскопическим, и поэтому свойства фазы не должны зависеть от ее количества. Однако именно потому, что дисперсная фаза представляется как отдельная фаза, несмотря на зависимость ее термодинамических свойств от дисперсности, к системе необходимо применять правило фаз Гиббса в виде выражения, учитывающего дисперсность как отдельный параметр Гсм. уравнение (П.169)]. [c.101]

    Правильной постановки эксперимента. В этом параграфе мы получим формулы, являющиеся обобщением известного правила фаз Гиббса на случай любой гетерогенной системы с учетом поверхностных явлений и внешних условий, а том числе — на случай дисперсных и капиллярных систем. [c.35]

    При проведении аналогий между ультрамикрогетерогенными системами и истинными растворами часто обсуждается специфика применения правила фаз Гиббса к этим системам. Возможность применения к золя]и молекулярно-кинетических законов, законов статистики и энтропии позволяет их рассматривать как системы, обладающие свойствами гетерогенно-дисперсных систем и истпн-ных растворов. Частицы истинных гетерогенно-дисперсных систем не участвуют в тепловом движении. С уменьщением размера до величин, отвечающих ультрамикрогетерогеиной области, частицы постепенно теряют свойство фазы — независимость термодинамических свойств от количества фазы. Как уже известно из разд. II. Д, термодинамические свойства частиц в этой области зависят от дисперсности (изменяются внутреннее давление, растворимость, температура плавления и другие параметры). Одновременно частицы начинают участвовать в тепловом движении системы. Чем меньше частицы, тем дальше система от истинного гетерогенно-дисперсного состояния и тем ближе к истинному раство-ру. [c.209]


    Молекулярная теория возникла почти одновременно с мнцел- лярной. Ее сторонниками, в частности Штаудинтером, было показано, что растворение полимеров, как и низкомолекулярных веществ,. идет с уменьшением свободной энергии, т. е. самопроизвольно, тогда как при образовании гетерогенной коллоидной системы свободная энергия возрастает в результате увеличения поверхности дисперсной фазы. Одним из доказательств того, что растворы полимеров термодинамически устойчивы и обратимы, является применение к ним правила фаз Гиббса. Наиболее важной в этой области является работа В. А. Каргина, С. П. Папкова и 3. А. Роговина но исследованию растворов ацетата целлюлозы в различных растворителях. Авторы показали, что в случае ограниченной растворимости ацетата целлюлозы в выбранном растворителе после расслаивания системы на две фазы каждой температуре отвечает определенная концентрация ацетата целлюлозы как в нижнем, так и в верхнем слое. Процесс оказался строго обратимым и термодинамически равновесным, т. е. концентрации слоев были неиз менны при данной температуре, как бы к этой температуре ни подходили— путем нагревания смеси или ее охлаждения. Кроме того, вид диаграммы для этой и других изучаемых авторами систем ацетат-целлюлоза— растворитель был аналогичен диаграммам состоя.ння низкомолекулярных ограниченно смешивающихся жидкостей. [c.150]


Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса правило фаз

Гиббса системы

Гиббсит

Дисперсные системы



© 2025 chem21.info Реклама на сайте