Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость коллоидных систем агрегативная

    Представление И. П. Пескова о двух типах устойчивости легко объясняет указанное противоречивое влияние температуры на устойчивость золей. Повышение температуры, а значит, и энергии броуновского движения препятствует оседанию частиц и тем способствует повышению кинетической устойчивости. Повышение кинетической энергии частиц способствует более частым и эффективным столкновениям, преодолению сил отталкивания и, следовательно, слипанию частиц, т. е. ведет к понижению агрегативной устойчивости. Одновременно с понижением агрегативной устойчивости уменьшается и кинетическая устойчивость, и в целом общая устойчивость коллоидной системы. [c.325]


    Приведите анализ потенциальной кривой для дву.х частиц гидрозоля. Какие силы преобладают при сближении частиц устойчивой дисперсной системы агрегативно неустойчивой коллоидной системы  [c.440]

    Агрегативная устойчивость дисперсных систем в очень сильной степени зависит от состава дисперсионной среды и может быть резко, изменена введением и нее даже очень малых количеств чужеродных электролитов. По влиянию добавок электролитов на устойчивость коллоидные системы можно разделить на два класса лиофобные и лиофильные системы. В лиофобных системах при добавлении электролитов резко увеличивается скорость коагуляции. После перехода через некоторый предел — критическую концентрацию — скорость коагуляции достигает предельного значения, характеризующего так называемую быструю коагуляцию. Лиофильные коллоидные системы коагулируют, если концентрация прибавляемого электролита весьма велика — порядка молей на литр. [c.260]

    Коагуляционные структуры образуются в том случае, когда под действием каких-либо причин агрегативная устойчивость коллоидной системы несколько снижается, но не теряется полностью. Если коллоидные частицы имеют форму палочек или вытяну- тых пластинок, то частичное снижение агрегативной устойчивости обозначает уменьшение толщины ионного слоя или сольватной оболочки мицеллы, причем на концах частиц эти факторы устойчивости почти полностью утрачиваются (рис. 85). В результате частицы соединяются своими концами, на которых сохранились только очень тонкие слои дисперсионной среды, образуя пространственную сетку — структуру. Дисперсионная среда находится в ячейках этой сетки (см. рис. 85, г). [c.208]

    Как известно, в качестве меры агрегативной устойчивости коллоидной системы можно рассматривать скорость ее коагуляции в определенных условиях. Поэтому исследование кинетики коагуляции латексов дает важные сведения для характеристики их устойчивости. Оно позволяет наблюдать за постепенными скрытыми изменениями состояния латекса, которые характеризуют коагуляционный процесс во времени и предшествуют явной коагуляции.  [c.20]

    Следовательно, устанавливается прямая зависимость между толщиной (плотностью) сольватных (гидратных) оболочек или, иначе, степенью гидратации противоионов и значением дзета-потенциала и агрегативной устойчивостью коллоидной системы. [c.327]

    Нарушение агрегативной устойчивости коллоидной системы в сторону укрупнения частиц за счет их слипания под влиянием молекулярных сил притяжения называется коагуляцией. Различают две стадии коагуляции скрытую и явную. Первая в коллоидных системах заканчивается, как правило, очень быстро. На этой стадии частицы хотя и укрупняются, но осадок еще не образуется. В некоторых случаях замечаются внешние изменения меняется окраска золя, появляется муть и т. п. Вторая стадия (явная коагуляция) наступает в результате дальнейшей агрегации частиц, которая завершается за определенное время полным разделением систе.мы на две фазы и выпадением части или всего коллоидного вещества в осадок. Такой осадок получил наименование— коагель (стр. 224), или коагулят, имеющий определенную структуру. [c.112]


    При понижении температуры средняя кинетическая энергия поступательного движения частиц дисперсной фазы уменьшается, из-за чего уменьшается и кинетическая устойчивость коллоидной системы. Агрегативная же неустойчивость ее при этом изменяется мало. Поэтому при некоторой температуре кинетическая устойчивость системы оказывается недостаточной, чтобы противодействовать агрегативной неустойчивости, и коллоидные частицы начинают агрегировать (слипаться) и оседать на дно сосуда, т. е. коллоидная система разрушается. Всякая коллоидная система сохраняет достаточную кинетическую устойчивость лишь в некотором для каждой системы определенном интервале температур. Выход за этот интервал в ту или иную сторону (повышение или понижение температуры) разрушает коллоидную систему. [c.325]

    Существенно, что как химическая, так и физическая теории строения мицеллы приводят к одним и тем же выводам, а именно к тому, что ионы электролита — стабилизатора препятствуют дальнейшему росту кристаллика, сообщают ему заряд и тем самым способствуют агрегативной устойчивости коллоидной системы. [c.242]

    Нарушение агрегативной устойчивости коллоидной системы в сторону укрупнения частичек вследствие их слипания под влиянием молекулярных сил притяжения называется коагуляцией. [c.80]

    Агрегативной устойчивостью коллоидной системы называют ее свойство сохранять степень дисперсности, т. е. определенный размер частиц, под влиянием различных воздействий. Потеря устойчивости проявляется в том, что частицы дисперсной фазы начинают соединяться между собой в более крупные агрегаты, которые, достигнув известных размеров, не могут больше оставаться во взвешенном состоянии и выпадают в осадок. [c.204]

    Ионные и молекулярные слои на поверхности частиц дисперсной фазы. Адсорбция ионов на поверхности коллоидных частиц, т. е. образование на их поверхности двойного электрического слоя, уменьшает агрегативную неустойчивость (при неизменном значении кинетической устойчивости) за счет возрастания сил электростатического отталкивания между мицеллами. Вследствие этого относительная роль кинетической устойчивости, а значит и устойчивость коллоидной системы в целом возрастают. При адсорбции на поверхности коллоидных частиц молекул поверхностно-активных веществ агрегативная неустойчивость (при неизменном значении кинетической устойчивости) сокращается за счет уменьшения свободной поверхностной энергии, приходящейся на одну частицу, поскольку при этом уменьшается межфазное натяжение. [c.325]

    Наименьшая концентрация электролита, введение которого вызывает снижение агрегативной устойчивости за определенный (обычно короткий) промежуток времени, называется порогом коагуляции. Для различных электролитов величины порогов коагуляции могут сильно варьировать. Порог коагуляции у зависит от величины заряда иона 2, противоположного по знаку коагулируемым частицам (коагулирую-ш ето иона), причем способность ионов снижать агрегативную устойчивость коллоидной системы при прочих равных условиях приблизительно обратно пропорциональна 2% т. е. [c.233]

    Коллоидные частицы имеют весьма малые размеры и поэтому участвуют в броуновском движении, в то же время они обладают заметной скоростью диффузии (10 —10 см /с), что способствует выравниванию концентрации частиц по объему. Коллоидные системы обладают избытком свободной энергии за счет чрезвычайно развитой удельной поверхности частиц. Термодинамически такая система должна самопроизвольно стремиться к состоянию, в котором ее свободная энергия была бы минимальна, т. е. к самопроизвольному умень-. шению поверхности, а следовательно, и к укрупнению частиц. Однако на практике коллоидные системы обладают весьма высокой агрегативной устойчивостью. Такая устойчивость при малых размерах частиц способствует седиментационной устойчивости (постоянству концентрации примесей по всему объему воды), так как гравитационная сила, вызывающая седиментацию, нивелируется силами диффузии. Агрегативная устойчивость коллоидной системы объясняется существованием двойного электрического слоя ионов и скачка потенциала на границе раздела фаз. [c.30]

    Существование агрегативно устойчивых коллоидных систем возможно только при определенных условиях, отсутствие или нарушение которых (введение электролита, увеличение концентрации) неизбежно приводит к снижению агрегативной, а отсюда и кинетической устойчивости. Без соблюдения определенных условий коллоидные системы агрегативно неустойчивы. [c.19]

    Агрегативная устойчивость выражает собой способность кол лоидной системы сохранять свою стедедь дисперсности. Arpera тивная устойчивость (в отнощении коагуляции) обусловлена на личием у частиц дисперсной фазы электрического заряда и соль ватной (в частном случае — гидратной) оболочки. В сравнительно устойчивых коллоидных системах частицы дисперсной фазы, в ре зультате взаимодействия с молекулами или ионами окружающей среды, обычно приобретают электрические заряды, различные по величине, но одинаковые по знаку для всех частиц дисперсной фазы в данной системе. Это легко обнаружить при действии [c.509]

    Таким образом, устанавливается прямая зависимость между толщиной (плотностью) сольватных (гидратных) оболочек, или, иначе, степенью гидратации противоионов, и величиной С-потенциала и агрегативной устойчивостью коллоидной системы. Однако с количественной стороны зависимость эта довольно сложна, трудно поддается определению и требует дальнейшего изучения. [c.132]


    Следовательно, кинетически устойчивые коллоидные системы могут самопроизвольно переходить в состояние агрегативной неустойчивости, т. е. разрушаться. [c.304]

    Процесс коагуляции можно объяснить следующим образом. При добавлении к золю электролита-коагулятора в растворе сильно повышается общая концентрация ионов и тем самым создаются благоприятные условия для адсорбции коллоидными частицами противоположно заряженных ионов. В результате коллоидные частицы лишаются своего заряда или снижают его до определенного минимума, при котором нарушается их агрегативная устойчивость. Коллоидная система при таких условиях не может существовать как самостоятельная дисперсная система и разрушается происходит объединение коллоидных частиц в более крупные агрегаты, которые и выпадают в осадок. [c.368]

    Коагуляцию коллоидных растворов можно вызвать изменением температуры, встряхиванием или взбалтыванием, уЛьтрацентрифу-гированием, повышением концентрации дисперсной фазы, введением в золь различных добавок, в частности электролитов, и т. п. Повышение температуры, встряхивание или взбалтывание, увеличение концентрации дисперсной фазы обусловливает более тесное сближение коллоидных частиц, чТо увеличивает степень их агрегации и, следовательно, уменьшает агрегативную устойчивость коллоидной системы. Однако во многих случаях действие этих факторов невелико. Наиболее мощным фактором коагуляции является действие электролитов. Разрушающее (коагулирующее) действие имеют те иОны электролита, заряд которых противоположен заряду коллоидных частиц. Такие ионы называются коагулирующими. [c.342]

    При добавлении к золю высркомолекулярного соединения, например желатина, агрегативная устойчивость его значительно повышается. Объясняется это тем, что макромолекулы длиной до 800 10 м, адсорбируясь на поверхности коллоидных частиц, покрывают их мономолекуляриым слоем, из-за чего коллоидный раствор низкомолекулярного соединения превращается как бы в коллоидный раствор высокомолекулярного соединения с присущими ему свойствами. Если высокомолекулярного соединения будет добавлено недостаточно для мономолекулярного покрытия коллоидных частиц, то наблюдается не повышение, а понижение устойчивости золя. В этом случае одна длинная макромолекула, адсорбируясь своими отдельными звеньями одновременно на нескольких коллоидных частицах, как бы стягивает их в один общий агрегат, уменьшая тем самым агрегативную устойчивость коллоидной системы. При этом происходит сенсибилизация, т. е. повышение чувствительности коллоидного раствора к факторам коагуляции. Поскольку защищенный золь в противоположность незащищенному обладает высокой агрегативной устойчивостью, он может быть получен более концентрированным, о имеет большое физиологическое и техническое значение. Например, находящиеся в крови человека в коллоидном состоянии малорастворимые карбонаты и фосфаты кальция не выпадают в осадок потому, что защищены высокомолекулярными белковыми веществами. Когда при заболевании содержание защитных белковых веществ в крови становится недостаточным, карбонаты и фосфаты кальция начинают выпадать в осадок, образуя камни в почках, печени и других частях организма. Защитное действие высокомолекулярных соединений ши- [c.350]

    Вьпие ( 18 этого раздела) было указано, что все гетерогенные дпсперсиыс системы являются неустойчивыми. В агрегативном отношении особенно неустойчивыми являются тонкодисперсные, т. е. коллоидные системы. Одиако на практике встречаются относительные устойчивые коллоидные системы, что обусловлено наличием электрического заряда у коллоидных частиц. Будучи одноименно заряжены, коллоидные частицы при сближении отталкиваются друг от друга и, следовательно, коагуляция в такой коллоидной системе не происходит. [c.194]

    Силами отталкивания могут являться электрические силы, возникающие в результате избирательней адсорбции межфазной поверхностью одного из ионов электролита, пргГсутствующего в системе. Поскольку частицы дисперсной фазы по своей природе одинаковы и адсорбируют всегда определенный ион, все они приобретают электрический заряд одного и того же знака и испытывают взаимное отталкивание, что препятствует сближению их на такие расстояния, где уже могут действовать весьма значительные аттракционные силы. Другой причиной, препятствующей сближению коллоидных частиц до расстояний, на которых начинают превалировать силы сцепления, может явиться образование на поверхности частиц сольватной оболочки из молекул среды. Такая оболочка возникает в результате адсорб ции дисперсной фазой либо молекул среды, либо молекул или ионов третьего компонента (стабилизатора) системы. Помимо этих двух факторов существуют и другие факторы, обеспечивающие агрегативную устойчивость коллоидным системам. Подробно все факторы устойчивости рассмотрены в гл. IX. [c.20]

    Коллоидным системам свойственна агрегативная неустойчивость, преодолеваемая лишь путем адсорбции ионов или молекул на частицах дисперсной фазы. Таким образом, агрегативно-устойчивая коллоидная система, в принципе, должна состоять из трех компонентов диспергированных чаетиц, среды и стабилизатора. [c.294]

    Различают седиментационную устойчивость и устойчивость к коагуляции (агрегативную устойчивость). Седимен-тационно устойчивы коллоидные системы с газовой и жидкой дисперсионной средой, в к-рых броуновское движение частиц препятствует оседанию грубодисперсные системы с одинаковой плотностью составляющих их фаз системы, скоростью седиментации в к-рых можно пренебречь из-за высокой вязкости среды. [c.81]

    Наиболее четко критику дисперсоидологии дал Песков (1917), показавший, что свойства коллоидных систем зависят не только от размеров частиц, но в гораздо большей мере— от наличия поверхностей раздела со значительной свободной поверхностной энергией. Песков отделил понятие кинетической устойчивости, обусловленной скоростью оседания частиц (зависящей от их размера), от устойчивости частиц к взаимному слипанию, которую он назвал агрега-тивной устойчивостью он указал, что коллоидным системам, вследствие их многофазности (гетерогенности) свойственна агрегативная неустойчивость, преодолеваемая лишь путем адсорбции ионов или других стабилизирующих веществ иа частицах дисперсной фазы. Таким образом, агрегативио устойчивая коллоидная система в принципе должна состоять из трех компонентов диспергированных частиц, среды и стабилизатора. Позднее аналогичная концепция была широко развита в работах Кройта, Фрейндлиха и их школ. Она давала объяснение основным свойствам [c.10]

    При добавлении к коллоидному раствору защитного высокомолекулярного соединения в количестве, недостаточном для образования структуры, наблюдается, как правило, не повышение агрегативной устойчивости коллоидной системы, а ее понижение. Это явление, нолучившее название сенсибилизации, может быть объяснено тем, что в растворе образуются отдельные агрегаты, каждый из которых содержит несколько коллоидных частиц, адсорбционно связанных с одной макромолекулой. Система, состояш ая из указанных агрегатов, будет менее устойчива, чем система, содержащая отдельные коллоидные частицы. [c.227]

    Высокоразвитая поверхность коллоидных систем обусловливает большой избыток свободной поверхностной энергии, что делает эти системы термодинамически неустойчивыми и стремящимися к уменьшению межфазной энергии. Это вызывает нарушение агрега-тивной устойчивости коллоидной системы, уменьшение степени дисперсности и объединение (слипание) частиц под действием молекулярных сил в агрегаты, т. е. происходит коагуляция, а система называется агрегативно неустойчивой. [c.156]

    Если сместить равновесие (1) влево, то возрастет число противоионов в коллоидной частице и уменьшится ее заряд. Уменьшение заряда частицы приведет, в свою очередь, к уменьшению числа молекул воды в гидратной оболочке коллоидной частицы, т.е. к смещению равновесия (2) в правую сторону. Устойчивость коллоидной системы нарушится. При некоторых условиях число противоионов в коллоидной частице может стать таким, что их заряд полностью нейтрализует заряд зарядообразующих ионов, т. е. коллоидная частица станет незаряженной. При этом -потенциал становится равным нулю. Такое состояние коллоидной частицы называется изоэлектрическим. Гидратная оболочка частицы в изоэлектрическом состоянии в значительной мере разрушена. Коллоидные частицы не защищены и при столкновениях слипаются, укрупняются. Процесс укрупнения частиц, потеря агрегативной устойчивости золя называется коагуляцией. Коагуляция золя приводит к потере его кинетической устойчивости, которая выражается в образовании осадка. [c.249]

    Агрегативная устойчивость выражает собой способность коллоидной системы сохранять свою степень дисперсности. Агрегативная устойчивость (в отношении коагуляции) обусловлена наличием у частиц дисперсной фазы электрического заряда и сольватной (в частном случае — гидратной) оболочки. В сравнительно устойчивых коллоидных системах частицы дисперной фазы, в результате взаимодействия с молекулами или ионами окружающей среды, обычно приобретают электрические заряды, различные по величине, но одинаковые по знаку для всех частиц дисперсной фазы в данной системе. Это легко обнаружить при действии постоянного электрического Поля на коллоидную систему, так как все частицы дисперной фазы перемещаются при этом к одному из электродов. Это не означает, что система в целом является заряженной. В целом система нейтральна, так как заряды частиц уравновешиваются зарядом ионов противоположного знака, находящихся в окружающей среде. В табл. 56 указаны знаки зарядов некоторых коллоидов. [c.502]

    Температура. При повышении температуры коллоидного раствора средняя кинетическая энерги5 ( поступательного движения частиц дисперсной фазы увеличивается, в результате чего увеличивается и кинетическая устойчивость коллоидной системы. Но чем больше средняя кинетическая энергия поступательного движения частиц диспе )сной фазы, тем больше они преодолевают силу электростатического отталкивания при столкновениях, сближаясь до таких расстояний (тысячных долей микрона), при которых (за счет сил Ван-дер-Ваальса) происходит их слипание, что связано с уменьшением числа частиц и увеличением свободной поверхностной энергии, приходящейся на одну частицу, а следовательно, с увеличением агрегативной неустойчивости коллоидной системы. Последнему процессу способствует также то, что при повышении температуры количество потенциалобразующих ионов на поверхности ядер мицелл уменьшается. Таким образом, повышение температуры кол- [c.324]

    При значении абсолютной температзфы Г = 300 К, безразмерного множителя у = 15 30 и среднего диаметра частиц 5 = = 10 см величина поверхностного натяжения на границе раздела фаз будет составлять всего 0,1 эрг/см . Отсюда следует, что при значении межфазного поверхностного натяжения, близком к нулю, происходит полное самопроизвольное растворение дисперсной фазы в дисперсионной среде. При этом агрегативная устойчивость коллоидной системы будет наибольшей. [c.16]

    Адсорбционно-сольватный фактор агрегативной устойчивости коллоидных систем связан с образованием на межфазной поверхности слоев из молекул или ионов. Адсорбционно-сольватные слои обладают особыми свойствами. Они имеют высокую прочность, молекулы в них взаимодействуют между собой более энергично и поэтому менее подвижны. В их составе могут быть кристаллические образования. Формирование таких слоев происходит в результате определенного взаимодействия между веществом дисперсной фазы и дисперсионной средой. Определенная ориентация молекул в слоях способствует проявлению особых механических свойств, а именно повышению вязкости, упругости, сопротивления сдвигу. Развитые адсорбционно-сольватные слои препятствуют сближению коллоидных частиц, т. е. способствуют повышению устойчивости коллоидной системы. Образование прочных адсорбционно-сольватных слоев характерно для гидроксидов таких металлов, как алюминий, железо и др. Согласно теории, разработанной П. А. Ребиндером и его школой, адсорбционно-сольватные слои представляют собой двумерные квазикристаллические структуры. Адсорбционно-сольватные слои могут образовываться и крупными молекулами органических веществ. Эти ориентированные слои не разрушаются при сближении коллоидных частиц, они создают структурно-механиче-1СКИЙ барьер, препятствующий их агрегации. Соединения, входящие в состав адсорбционно-сольватных слоев, называются стабилизаторами. [c.116]

    Если частицы находятся на таком расстоянии, что их диффузные слои частично перекрываются, то между ними возникают силы отталкивания в результате действия одноименных полей. Диффузные слои противоионов деформируются, происходит перераспределение ионов в контактирующих слоях. Соединению коллоидных частиц препятствует наличие потенциального барьера. На рис. 15 приведены кривые потенциальной энергии отталкивания, энергии притяжения и объединенная потенциальная кривая, результирующая их действие в зависимости от расстояния между частицами. Энергия отталкивания считается положительной, а энергия притяжения — отрицательной. Если высота потенциального барьера (II) и глубина второго минимума (III) незначительна, частицы сближаются между собой и коагулируют в результате ближнего взаимодействия (I). Расстояние зто составляет несколько десятых долей нанометра. Агрегативная устойчивость коллоидной системы соответствует значительной высоте потенциального барьера (II) и малой глубине второго минимума (III). Особый вид связи между частицами наблюдается при достаточно большой глубине второго минимума, при дальнем взаимодействии (расстояние около 10 нм). При этом частицы образуют пары, тройники или более сложные структуры, в которых не происходит агрегатирования частиц, т. е. дисперсность системы не изменяется. В ней наблюдается обратимое равновесие зольч агрегат. Подобное состояние системы является относитель- [c.118]

    Коагуляция — это нарушение агрегативной устойчивости коллоидной системы, уменьшение степени дисперсности в результате слипания коллоидных частиц. Коагуляцию вызывают различные факторы механическое воздействие, изменение температуры (кипячение или вымораживание), излучения, посторонние вещества, особенно электролиты. Наиболее важна и хорошо изучена электролитная коагуляция коллоидов. Различают две стадии коагуляции скрытую и явную. Первая заканчивается быстро и внешне не проявляет себя слипание частиц можно установить только ультрамикроскопически. О явной коагуляции можно судить по внешним признакам изменению окраски, появлению мути и полному ра ушению системы с выделением вещества дисперсной фазы в осадок. Такой осадок называют коагулятом или коагелем. [c.242]

    Следует подчеркнуть, что истинный раствор высокополимера принципиально отличается от коллоидной системы, характеризуемой гетерогенностью. Агрегативная устойчивость коллоидной системы (золя) обеспечивается высокой дисперсностью и присутствием стабилизаторов, создающих вокруг мицелл сольватные оболочки. Коллоидная система меньшей степеии дисперсности может существовать в виде суспензии, эмульсии и пепы. Высокомолекулярные соединения также образуют в соответствующих условиях подобные коллоидные системы, требующие стабилизаторов для сохранения первоначальной степени дисперсности. Истинные же растворы высокополимеров, о которых идет речь в настоящем разделе, получающиеся при самопроизвольном растворении в том или ином растворителе (и которые не следует называть золями), отличаются от прочих истинных растворов лишь полидисперспостью, большими периодами релаксации, реакцией на добавки посторонних веществ и т. д. [c.34]


Смотреть страницы где упоминается термин Устойчивость коллоидных систем агрегативная: [c.195]    [c.176]    [c.338]    [c.8]    [c.269]   
Курс коллоидной химии 1984 (1984) -- [ c.230 , c.231 , c.331 ]

Курс коллоидной химии (1984) -- [ c.230 , c.231 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегативная устойчивость коллоидных систем. Коагуляция

Понятие о коллоидных системах. Агрегативная и седиментационная устойчивость

Система устойчивая

Система устойчивые агрегативно

Системы коллоидные

Системы устойчивость

Устойчивость агрегативная

Устойчивость и коагуляция коллоидных растворов и суспензий Кинетическая и агрегативная устойчивость дисперсных систем

Устойчивость коллоидных систем

Факторы агрегативной устойчивости коллоидных систем

Электрические свойства и агрегативная устойчивость коллоидных систем



© 2025 chem21.info Реклама на сайте