Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой концентрация ионов

Рис. 171. Строение двойного электрического слоя (/) на границе металл— раствор и распределение потенциала в ионной обкладке при различной концентрации раствора (//) а6 — плотная часть 6в — диффузная часть, ф — разность потенциалов между раствором и металлом 1)), 1)1 — падение потенциала в плотной и диффузной частях двойного слоя х — расстояние от поверхности металла Рис. 171. <a href="/info/602564">Строение двойного электрического слоя</a> (/) на <a href="/info/358042">границе металл</a>— раствор и <a href="/info/308053">распределение потенциала</a> в <a href="/info/10600">ионной обкладке</a> при <a href="/info/873392">различной концентрации раствора</a> (//) а6 — <a href="/info/134022">плотная часть</a> 6в — <a href="/info/386330">диффузная часть</a>, ф — разность потенциалов <a href="/info/638224">между раствором</a> и металлом 1)), 1)1 — <a href="/info/10684">падение потенциала</a> в плотной и <a href="/info/8712">диффузной частях двойного слоя</a> х — расстояние от поверхности металла

    Коагулирующая способность ионов растет с их валентностью, а, согласно теории двойного электрического слоя, более высокой валентности соответствует (при одинаковой концентрации) более низкий -потенциал. [c.197]

    Современная теория двойного электрического слоя использует теорию Гуи — Чепмена для описания диффузий части этого слоя. В первоначальном виде теория Гуи — Чепмена ие учитывала наличия слоя Гельмгольца и поэтому ее допущения не позволяли правильно описать электрические явления, на которые существенное влияние оказывает плотная, непосредственно прилегающая к межфазной поверхности часть слоя. Пренебрежение размерами иоиов приводит к тому, что не учитывается минимальная толщина слоя, и это в свою очередь вызывает большие ошибки при расчете параметров двойного электрического слоя. Теория Гуи — Чепмена, учитывая только концентрацию и заряд нонов электролитов, не объясняет различного действия ионов разной природы, связанного со специфической адсорбцией их на межфазной поверхности. [c.60]

    Электрическое поле, создаваемое зарядом металла в окружающем его растворе, вызывает неравномерное распределение ионов в растворе вблизи металла. Если металл заряжен отрицательно (рис. 146), то катионы, находящиеся в растворе вблизи него, притягиваясь металлом, концентрируются около него, в особенности в слое, непосредственно прилегающем к поверхности металла. Анионы же отталкиваются металлом, и их концентрация в растворе вблизи металла будет понижена, в особенности в слое, непосредственно прилегающем к поверхности металла. В результате раствор вблизи металла приобретает заряд, противоположный по знаку заряду металла. Образуется двойной электрический слой. Этот слой характеризуется различным распределением ионов разного знака в поверхностном слое раствора и неодинаковым распределением зарядов в поверхностном слое металла. Он связан с определенной разностью потенциалов (скачком потенциала) на поверхности раздела металл/раствор .  [c.416]

    Если пластинку из металла погруз ть в раствор его соли, то на границе раздела фаз возникает двойной электрический слой. Образовавшаяся пограничная разность потенциалов получила название электродного потенциала. Математическая зависимость между величиной скачка потенциала на границе соприкосновения металла и раствора и концентрацией (точнее, активностью) ионов этого металла в растворе выражается следующим уравнением  [c.120]


    Вследствие того, что в двойном электрическом слое концентрация ионов выше, чем в растворе, в узких капиллярах концентрация заряженных частиц выше средней концентрации по всему объему жидкости. Поэтому электрическая проводимость растворов в капиллярах превышает среднюю электрическую проводимость жидкости. Это явление называется поверхностной электрической проводимостью и учитывается при более точном описании электроосмотического эффекта. [c.98]

    На рис. У-2 показано строение двойного электрического слоя для растворов электролитов средней концентрации. Отрицательно заряженные ионы адсорбируются на поверхности твердого тела, образуя тонкий внутренний слой. Положительно заряженные ионы образуют внешний слой, причем концентрация этих ионов в нем убывает в направлении от поверхности твердого тела. Такой характер внешнего слоя объясняется взаимным влиянием электростатического поля, концентрирующего положительно заряженные ионы вблизи внутреннего слоя, и теплового движения молекул, равномерно распределяющего эти ионы во всем объеме жидкости. [c.192]

    Эти явления связаны с наличием ионно-электростатических полей у границ поверхностей в растворах электролитов (двойной электрический слой). Распределение ионов в электролите у заряженной поверхности пористой среды имеет диффузный характер, т.е. противоионы не расположены в каком-то одном слое, за пределами которого электрическое поле отсутствует, а находятся у поверхности в виде "ионной атмосферы", возникающей вследствие теплового движения ионов и молекул жидкости. Концентрация ионов, наибольшая вблизи адсорбированного слоя, убывает с расстоянием от твердой поверхности до тех пор, пока не сравняется со средней их концентрацией в растворе. [c.181]

    Очевидно, можно выбрать такую концентрацию электролита (со), при которой химические потенциалы ионов в металле и растворе одинаковы. Растворы такой концентрации получили название нулевых растворов. При погружении металла в его нулевой раствор на поверхности электрода не возникает двойного электрического слоя, однако, как будет показано ниже, и и в этом случае разность потенциалов между металлом и раствором не равна нулю. [c.532]

    Анализ полученных данных показывает, что разделение на гидроокисных динамических мембранах происходит в соответствии с механизмом исключения ионов заряженными телами. Когда микропористое заряженное тело контактирует с раствором электролита, концентрация ионов В жидкости, заполняющей поры, отличается от их концентрации в исходном растворе. Причиной различия является двойной электрический слой, образующийся у поверхности пор. Из-за отталкивания нойонов, т. е. ионов того же знака, что и заряд поверхности, их концентрация в микропористом теле меньше, чем в исходном растворе. [c.216]

    Под толщиной двойного электрического слоя следует понимать расстояние между поверхностью твердого тела, на котором адсорбированы ионы одного знака, и центром тяжести ионов другого знака, находящихся во внешнем слое. На толщину двойного электрического слоя оказывают влияние различные факторы, в частности свойства твердого тела, концентрация электролитов, валентность ионов, наличие поверхностно-активных веществ. Так, толщина двойного электрического слоя уменьшается с увеличением концентрации электролита при этом концентрации одновалентного иона калия, двухвалентного иона бария и трехвалентного иона алюминия, производящие одинаковое действие, приблизительно относятся как 800 25 1. [c.192]

    При 1/1 > и2 (см. рис. 107) переход части катионов в раствор сопровождается снижением средней потенциальной энергии поверхностных катионов (точка / перемещается вниз), появлением на металлической поверхности избыточных отрицательных зарядов и повышением энергетического барьера (За- Повышение концентрации ионов у поверхности металла сопровождается ростом запаса их энергии (точка 2 перемещается вверх), приобретением раствором избыточного положительного заряда и снижением энергетического барьера Таким образом, образующийся двойной электрический слой затрудняет протекание прямого процесса и облегчает протекание обратного процесса. [c.153]

    На рис. ПО, б и 111, б приведены соответствующие этим моделям ионного двойного электрического слоя изменения концентрации ионов с расстоянием X от электрода. [c.159]

    Разность потенциалов, установившаяся между электродом и раствором при образовании двойного электрического слоя, называется электродным потенциалом ф. Он характеризует равновесное состояние системы электрод — раствор, и поэтому является ее термодинамическим свойством. Электродный потенциал зависит от материала электрода, природы окружающей его среды (раствора), температуры и концентрации ионов, которыми электрод обменивается с раствором. Эта зависимость выражается уравнением Нернста [c.235]


    Кроме указанного различия в концентрациях анионов и катионов, на образование двойного электрического слоя могут оказывать влияние и другие эффекты например, случай, когда на поверхности электрода могут адсорбироваться молекулы растворителя и ионы или молекулы растворенных веществ. [c.417]

    Таким образом, при погружении металла в воду или в раствор, содержащий ионы, данного металла, на поверхности раздела металл раствор образуется двойной электрический слой и возникает разность потенциалов скачок потенциала) между металлом и раствором. Величина этой разности потенциалов зависит от свойств металла и раствора, в особенности от концентрации ионов данного металла в растворе и от характера взаимодействия между частицами в двойном электрическом слое. [c.417]

    С увеличением концентрации электролита в растворе двойной электрический слой на границе металл — раствор сжимается, ионы приближаются к поверхности электрода и большая их часть из диффузного д. э. с. переходит в плотный д. э. с. При этом диффузный >))1-потенциал уменьшается, а скачок потенциала в плотном д. э. с. увеличивается. В растворах с концентрацией электролита (ионной силой) 0,1—1,0 моль л диффузный двойной силой и диффузный -ф -потен-циал практически равны нулю. [c.302]

    На формирование двойного электрического слоя существенное влияние оказывает природа поверхности конденсированной фазы, наличие онределенных ионов в растворе, их концентрация. [c.62]

    Наряду с указанными объяснениями механизма действия поверхностно-активных веществ высказано [7, 12] также предположение о влиянии адсорбированного вещества на скорость разряда иона. Торможение или ускорение разряда ионов металла поверхностно-активными веществами может быть обусловлено влиянием адсорбированного вещества на распределение потенциала на границе фаз. При этом изменяются как концентрация разряжающихся ионов в плотной части двойного электрического слоя, так и энергия активации самого акта разряда ионов. [c.347]

    При добавлении соли одного металла к раствору соли другого изменяется также состав или строение двойного электрического слоя. При этом концентрация каждого вида ионов уменьшается вследствие вытеснения одних ионов другими. В соответствии с новым установившимся распределением ионов в двойном слое изменится величина поляризации и, следовательно, скорость разряда каждого вида ионов. Однако учет этого фактора важен главным образом для сильно разбавленных растворов, которые в практике почти не применяются. [c.435]

    В нашем опыте НС1 диффундирует в направлении от большей концентрации к меньшей. Поскольку ионы водорода обладают примерно в пять раз большей подвижностью, чем ионы хлора, в области меньших концентраций окажется избыточный положительный заряд, а в области больших концентраций — отрицательный. Наличие такого двойного электрического слоя и приводит к возникновению скачка потенциала. [c.137]

    Сопоставляя соотношения (VI. 116), (VI. 117) и (VI. 119), можно сделать вывод, что в соответствии с теорией ДЛФО нейтрализационная коагуляция более характерна для систем с частицами, обладающими малым электрическим потенциалом. Особенно сказывается на коагуляции в таких системах специфическая адсорбция ионов добавляемого электролита, имеющих заряд, одноименный е зарядом противоионов двойного электрического слоя. Эти ионы, находясь в адсорбционном слое, резко снижают потенциал срд (VI. 117)—происходит нейтрализация фо-потенциала уже в адсорбционном слое. Так как при специфической адсорбции ионов возможна перезарядка поверхности частиц, то для нейтрализаци онной коагуляции характерна область между минимальной и максимальной концентрацией электролита. При введении электролита в количестве, превышающем некоторое максимальное значение, дисперсная система может перейти во вторую область устойчивости, в которой частицы будут иметь заряд, противоположный заряду частиц в первой области устойчивости. [c.335]

    Для того чтобы зарядить электрод до более положительного (отрицательного) потенциала, к нему необходимо подвести положительный (отрицательный) заряд. Количество электричества, требуемое для заряжения электрода, зависит от его емкости. В растворах простых неорганических солей при потенциалах немного поло-жительнее потенциала нулевого заряда емкость электрода составляет 20 мкФ/см , а при более положительных потенциалах она выше. (Емкость электрода — не постоянная величина, а в той или иной мере зависит от потенциала электрода. Чтобы учесть эту зависимость, вводят понятие дифференциальной емкости электрода С = dqldE, где 9 — заряд электрода.) Вообщ,е говоря, емкость электрода очень высока, что обусловлено исключительно малой толщиной образующегося вблизи его поверхности молекулярного конденсатора [ср. уравнение (1.2)]. Простейшая модель двойного электрического слоя — плоский конденсатор, одна обкладка которого образуется зарядами в металле, а другая — ионами, находящимися в растворе на минимальном расстоянии от поверхности электрода (это расстояние очень мало, всего несколько десятых нанометра). В подобной структуре условие электронейтральности не соблюдается, и в области двойного электрического слоя преобладают ионы определенного вида. В целом, однако, двойной электрический слой остается электронейтральным сумма зарядов обкладок конденсатора (в металле и в растворе) равна нулю. Такая модель двойного электрического слоя (описанная Гельмгольцем в 1879 г.) законна, однако, лишь для довольно концентрированных растворов электролитов. В более разбавленных растворах расстояния, на которых ионы в растворе образуют обкладку двойного электрического слоя, возрастают вследствие теплового движения ионов. Теперь преобладает структура, аналогичная ионной атмосфере вокруг отдельного иона. Такая структура называется диффузным двойным слоем. На рис. 59 схематически показан двойной электрический слой на границе раздела" металлический электрод / раствор электролита. Толщина диффузного двойного слоя сильно зависит от концентрации [c.160]

    При соприкосновении проводника первого рода с электролитом на границе электрод — раствор возникает двойной электрический слой. В качестве примера рассмотрим медный электрод, погруженный в раствор Си304. Химический потенциал ионов меди в металле при данной температуре можно считать постоянным, тогда как химический потенциал ионов меди в растворе зависит от концентрации соли. Таким образом, в общем случае эти химические потенциалы неодинаковы. Пусть концентрация СиЗО такова, что химический потенциал ионов меди в растворе больше химического потенциала этих ионов в металле. Тогда при погружении металла в раствор часть ионов из раствора дегидратируется и перейдет на металл, создав на нем положительный заряд. Этот заряд будет препятствовать дальнейшему переходу ионов Сц2+ из раствора на металл и приведет к образованию вблизи электрода слоя притянутых к нему анионов 504 (рис. XX, 1а). Установится так называемое электрохимическое равновесие, при котором химические потенциалы ионов в металле и в растворе будут отличаться на величину разности потенциалов образующегося при этом двойного электрического слоя  [c.531]

    Электрический потенциал и структура двойных электрических слоев мало зависят от размеров частиц. Однако увеличение удельной поверхности в дисперсной системе приводит к повышению концентрации противоионов двойного слоя,что в свою очередь может влиять на многие свойства системы, в том числе и на свойства этого слоя. Если противоионами в двойном электрическом слое являются Н+- или ОН -ионы, то наблюдается так называемый суспензионный эффект, сущность которого состоит в том, что значение рНс суспензии отличается от значения рНф выделенного из нее фильтрата. Количественно суспензионный эффект характеризуется величиной ДрНсэ = рНс—рНф, которая возрастает с увеличением концентрации дисперсной фазы в суспензии, а при постоянной массовой концентрации дисперсной фазы — с увеличением ее дисперсности, т. е. эффект повышается с увеличением межфазной поверхности в суспензии. Значение суспензионного эффекта уменьшается с повышением концеитрацпи электролитов в системе, что еще раз подтверждает указанную причину возникновения этого эффекта. Знак суспензионного эффекта (ДрНсэ) совпадает со знаком заряда поверхности (частиц, мембран). [c.343]

    Из уравнения (XX, 6) видно, что определяющей суммарную емкость двойного электрического слоя является меньшая из величин Сг и Сд. Емкость плотной части двойного слоя определяется размерами адсорбированных ионов и способностью их деформироваться под действием электрического поля. Поэтому при постоянной температуре Сг является функцией только заряда поверхности и не зависит от концентрации электролита. Обычно величины емкости плотного слоя лежат в пределах 20-4-40 мкф/см . В отли-чие 01 Сг, емкость диффузной части двойного слоя существенно зависит от концентрации электролита (уменьшается с разбавлением, а также с уменьшением заряда электрода). Если концентрация электролита высока, то емкость диффузной части двойного слои значительно превышает емкость слоя Гельмгольца. В этом случае [см. уравнение (XX, 6)] [c.539]

    Физико-химические характеристики биологических мембран, основу которых составляют фосфолипидные бислои, определяют механизмы протекания многих важных биологических процессов. В последнее десятилетие усилия многих лабораторий были направлены на исследование этих характеристик с помощью различных модельных систем, среди которых мультиламелляр-ная фосфолипидная дисперсия является одной из самых популярных. Эта система, самопроизвольно образующаяся при определенной концентрации фосфолипидных молекул в воде, представляет собой стопку плоских параллельных бислоев, разделенных тонкой прослойкой воды или водного электролита. Как известно, свойства воды в таких тонких слоях существенно отличаются от свойств объемной воды [415]. Если в водной фазе фосфолипидных дисперсий присутствуют растворенные ионы, то около каждой липидной поверхности образуется двойной электрический слой (ДЭС). [c.147]

    Прп быстром смешивании реагентов увеличивается число центров кристаллизации, вследствие чего образуются мелкокристаллические осадки. Интенсивное перемешивание может влиять на размер частиц и препятствовать их слипанию. Наличие посторонних ионов влияет на химию поверхности осадков. После осаждения концентрация электролита высока это может нарушить двойной электрический слой вокруг частиц п привести к образованию хлопьевидного осадка. Если же избыток электролита отмыт, то частицы могут образовать устойчивый коллоидный раствор, который трудно отфильтровать. Твердый комионент выделяют из таких суспензий центрифугированием, что позволяет получать высокодисперсные материалы. Использованпе закономерностей коллоидной химии открывает реальные возможности в целенаправленном воздействии на заряд новерхности, размер и морфологию частиц, что в конечном итоге позволит проводить направленный синтез катализатора с заранее заданными свойствами 4, 5]. [c.123]

    Л. Н. Фрумкин и сотр. показали, что перенапряжение перехода определяется строением двойного электрического слоя на границе раствор — металл. Можно полагать, что электрохимическая реакция протекает только при непосредственном соприкосновении реагирующих частиц с электродом, так как переход электронов на значительное расстояние маловероятен. С этой точки зрения следует считать ре-акционноспособными частицы, расположенные только в плотной части двойного электрического слоя (см. 174). Поэтому при расчете перенапряжения следует учитывать не электродный потенциалу и концентрацию реагирующих веществ в массе электролита, а падение потенциала и концентрацию реагирующих ионов в плотной части двойного слоя. Тогда в уравнение (184.17) входит дополнительный член, содержащий фгпотенциал  [c.508]

    Как показали последние иоследоваиия в области кинетики совместного разряда ионов, большое значение имеет концентрация ионов в двойном электрическом слое, определяемая потенциалом г]) , так как это определяет величину М"+]к конценирацию на расстоянии одного ионного радиу са от катода, В эти выражения не входит концентрационная поляризация. В случае ее воз-нимновевия 1 либо г а определяется не выражением (32,1), а (16,1). [c.53]

    Однако прочно к поверхности ионы К+ не присоединяются (они образуют с поверхностью растворимые соединения), а так как их концентрация около поверхности больше, чем в растворе, то они диффундируют в сторону меньшей концентрации, т. е. от поверхности в раствор. На поверхности кристалла Ag l возник двойной электрический слой (рис. 36), состоящий из внутренней обладки, или адсорбционного слоя (ионы 1 ), и наружной обкладки, или слоя противоионов (ионы К+). Часть противоионов связана с поверхностью относительно прочно и входит в плотный слой остальные противоионы, со-вершаюшие тепловое движение около поверхности, составляют диффузную часть ДЭС (диффузный слой). Распределение противоионов между плотной и диффузной частями ДЭС определяется соотношением между электростатически.м притяжением ионов к поверхности и их диффузией в раствор последняя определяется тепловым движением ионов и зависит от разности концентраций в ДЭС и объеме раствора. [c.65]


Смотреть страницы где упоминается термин Двойной электрический слой концентрация ионов: [c.60]    [c.708]    [c.44]    [c.180]    [c.326]    [c.265]    [c.538]    [c.330]    [c.198]    [c.20]    [c.303]    [c.97]    [c.76]    [c.26]    [c.304]    [c.120]    [c.174]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой ионов

Ионная концентрация

Ионы двойные

Концентрация ионов

Концентрация электрическая

Слой ионита

Электрический двойной слой ионо



© 2024 chem21.info Реклама на сайте