Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрии генетика

    Генетика митохондрий лучше всего разработана для дрожжей-сахаромицетов, однако ряд примеров митохондриального наследования получен и у других объектов. [c.242]

    Эти различия важны для генетики человека. То обстоятельство, что только одна из четырех клеток развивается в зрелый ооцит, а три полярных тельца почти (или совсем) не имеют цитоплазмы, дает возможность этому ооциту передать новой зиготе полный набор цитоплазматических компонентов, таких, как митохондрии и информационные РНК (разд. 4.7.1). Эти различия в клеточной кинетике, вероятно, обусловливают разницу между мужчинами и женщинами в частоте трисомий, с одной стороны, и точковых мутаций-с другой (разд. 5.1 и 5.2). [c.62]


    Многоклеточные эукариоты неудобны для изучения генетики митохондрий, поскольку их клетки — облигатные аэробы, которые не могут существовать при нарушении основной функции митохондрий — дыхания. В то же время дрожжи-сахаромицеты являются факультативными аэробами. При подавлении дыхания они могут существовать за счет брожения, используя для этого глюкозу и некоторые другие сахара в качестве источников углерода. На неферментируемых источниках углерода, например, на этаноле, глицерине, лактате кальция и др., в отсутствие дыхания дрожжи не растут. [c.238]

    В первой из трех глав части III (гл. 8) приведены данные о структуре генов эукариот и современные представления о механизме их экспрессии, в частности сведения о сложных сигналах регуляции транскрипции, а также о происхождении, локализации и структуре ингронов и тех механизмах, с помощью которых интроны удаляются из первичных транскриптов при сплайсинге. Очень существенным здесь явилось применение обратной генетики-введение специфических мутаций в определенные сегменты ДНК и последующий анализ структурно-функциональных взаимоотношений в генах эукариот. В гл. 9 основное внимание сосредоточено на организации сложных эукариотических геномов. Рассмотрено расположение генов и других элементов в молекуле ДНК, в частности в центромерных и теломерных областях. Красной нитью через всю главу проходит концепция генома как летописи эволюционной истории. В заключение дано описание геномов внутриклеточных орга-нелл-митохондрий и хлоропластов. В гл. 10 представлены механизмы случайных и неслучайных перестроек геномной ДНК. Речь идет об амплификациях, делециях и транспозициях—как неза-нрограммнрованных и приводящих к мутагенезу, так и запрограммированных в геноме и осуществляющих точную регуляцию генной экспрессии, например изменение типов спаривания у дрожжей и образование генов иммуноглобулинов. [c.7]

    Таким образом, генный нокаут, как и перенос новых генов, митохондрий и целых хромосом, позволяет не только определять функцию гена, но и моделировать некоторые патологии человека. В настоящий момент этот прием становится одним из ключевых в молекулярной генетике. Его чрезвычайная важность на данном этапе исследований определяется массовым переходом от исследований по структурной генетике к функциональной генетике. [c.210]

    Изучение стрессовых белков имеет значение для понимания как их биохимических функций, так и их роли в механизмах генетической детерминации устойчивости растительных клеток к действию низкой температуры. Поэтому в лаборатории физиологической генетики Сибирского института физиологии и биохимии растений были проведены исследования, направленные на изучение генетических механизмов устойчивости растений к температурным стрессам. Важное место в этих исследованиях уделялось изучению именно стрессовых белков, так как они являются посредниками между геномом и биохимическими процессами в клетке. Результаты этих исследований, полученные за последние пять лет, представлены в данной книге. В ходе работы были изучены изменения в экспрессии стрессовых белков при гипо-и гипертермии, выделены некоторые белки холодового шока, определены их характеристики, локализация, физиологические и биохимические функции в клетке, участие в регуляции энергетических функций митохондрий. Полученные данные были использованы для прикладной работы по селекции озимой пшеницы на морозоустойчивость. [c.5]


    О происхождении митохондриальной и хлоропластной ДНК было высказано множество предположений. Одно из них состоит в том, что они представляют собой остатки хромосом древних бактерий, которые попали в цитоплазму клетки-хозяина и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Поскольку свыше 95% митохондриальных белков кодируется ядерной ДНК, причина существования митохондриальной и хлоропластной ДНК является одной из загадок генетики клетки. В процессе деления клетки-хозяина митохондрии и хлоропласты также делятся (рис. 27-24). До и во время деления митохондрий их ДНК реплицируются и дочерние мДНК переходят в дочерние митохондрии. [c.876]

    Каковы происхождение и судьба митохондрий На эти вопросы ответить очень трудно. Существует целый ряд различных теорий относительно происхождения митохондрий. Однако ни одна из них не была подтверждена экспериментально. Недавно Гибор и Граник [36] предложили теорию, согласно которой митохондрии представляют собой самовоспроизводящиеся цитоплазматические тельца, размножение которых подчиняется контролю со стороны ядра лишь частично или вообще не контролируется ядром иначе говоря, в митохондриях должны содержаться информационные макромолекулы. Действительно, во многих митохондриях найдена рибонуклеиновая кислота (РНК), а на электронных микрофотографиях митохондрий обнаруживаются. нити дезоксирибонуклеиновой кислоты (ДНК) [71]. ДНК была выделена из митохондрий нейроспоры [64]. При изучении митохондриальной ДНК маша и турнепса оказалось, что она существенно отличается от ядерной ДНК (Суйяма, Боннер мл., неопубликованные данные). В свете этих данных совершенно очевидно, что изучение генетики митохондрий становится поистине насущной проблемой. Чрезвычайно волнующей представляется вполне, по-видимому, реальная перспектива разработки метода культивирования митохондрий в стерильных условиях. Интересные наблюдения и концепции, связанные с вопросом о происхождении митохондрий, имеются в работах Слонимского и др. [84], а также Чанса и Эста-брука [17]. [c.57]

    Хотя обшее строение митохондрии кажется не особенно сложным, но структура наименьшей единицы его действия представляется значительно сложнее и имеет, по-видимому, универсальное значение в биоэнергетике, подобно значению нуклеиновых кислот в генетике. Эта общая единица является чем-то вроде бруска, построенного [c.299]

    Бактерии настолько малы, что находятся на грани разрешения обычного светового микроскопа. Их линейные размеры достигают всего лишь порядка 1 мкм. Поэтому в течение долгого времени было трудно при непосредственном визуальном наблюдении получить информацию об их внутренней структуре. Однако с появлением электронного микроскопа оказалось возможным выявить детальное строение бактериальной клетки, как это можно видеть на приведенной электронной микрофотографии (фиг. 21). Следует отметить, что увеличение на этой микрофотографии в пять раз больше, чем на предыдущей микрофотографии (фиг. 20). Следовательно, размер всей бактериальной клетки не превышает размера митохондрий, находящихся в цитоплазме клеток эукариотов. Хотя в прокариотической клетке нет истинного ядра, ДНК в ней явно локализована в определенном участке клетки, которую иногда называют центральным телом. Окружающая это тело часть клетки o epжит много РНК. Как и в эукариотической клетке, основная масса РНК в клетке прокариотов сосредоточена в рибосомах — гранулярный фон на большей части клеток (фиг. 21). Эндоплазматической же сети в клетках прокариотов нет. По 4юрмальной аналогии с областью клетки эукариотов, в которой сосредоточена ДНК, содержащее ДНК пентральное тело бактерии часто называют ядром , остальную часть клетки обычно называют цитоплазмой бактерии. Это парадоксальное распространение терминов, используемых для эукариотов, на бактерии, отличающиеся от клеток высших форм отсутствием именно этих структур, настолько устоялось в молекулярной генетике, что в дальнейшем нельзя будет избежать употребления этих неточных слов. [c.47]

    Геном хлоропластов не был первым полностью расшифрованным геномом органелл. Первым оказался митохондриальный геном человека относительно малые размеры сделали его особенно привлекательным объектом для молекулярных генетиков, вооруженных новейшей методикой секвенирования ДНК (см. разд. 4.6.6), и в 1981 г. была опубликована полная последовательность этого генома, состоящая из 16569 пар нуклеотидов. Сопоставляя ее с известными нуклеотидными последовательностями тРНК и частичными аминокислотными последовательностями белков, кодируемых генами митохондрий, удалось определить на кольцевой молекуле ДНК локализацию всех этих генов (рис. 7-70). По сравнению с геномами ядра, хлоропластов и бактерий митохондриальный геном человека имеет несколько поразительных особенностей  [c.490]

    Полиморфизм митохондриальной ДНК. Митохондрии передаются только по материнской линии всем потомкам диплоид-ность, мейоз и рекомбинация в этом случае отсутствуют. Полиморфизм митохондриальной ДНК особенно важен для популяционной генетики, с его помощью изучают взаимодействие между популяциями и историю популяций [1792]. Вероятно, варианты митохондриальной ДНК не подвержены давлению отбора. Следовательно, сравнение наследующихся по материнской линии рестриктных вариантов и РНК в группах популяций позволяет получить достоверную картину их мутационной истории. [c.291]


    Изучением митохондрий занимаются цитологи, генетики, биофизики и физиологи. Значительные успехи в этой области привели к созданию новой науки — митохондриоловии. [c.53]

    Большая автономия свойственна хлоропластам, однако и здесь основной процесс, осуществляемый хлоропластом, — фотосинтез, также контролируют гены самого хлоропласта и гены ядра. Правда, генетика хлоропласта разработана хуже, чем генетика митохондрий. Возможно, поэтому гипотеза симбиогенетического происхождения хлоропластов представляется более вероятной, чем аналогичная гипотеза в отношении митохондрий. [c.250]

    Хромосомная теория наследственности Т. Моргана — одрга из основополагающих теорий генетики, но постепенно накапливающиеся факты приводили к представлению о существовании генов и вне хромосом, в цитоплазме. Такими носителями внехромо-сомной последовательности оказались митохондрии. Выяснилось, в частности, что цитоплазматическое наследование человека связано прежде всего с митохондриальной ДНК. [c.99]


Библиография для Митохондрии генетика: [c.151]    [c.151]   
Смотреть страницы где упоминается термин Митохондрии генетика: [c.950]    [c.507]    [c.236]    [c.572]    [c.64]    [c.490]    [c.187]   
Биохимия растений (1968) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Век генетики

Генетика



© 2025 chem21.info Реклама на сайте