Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия размеры

Рис. 2-21. Электронная микрофотография метки листа кукурузы. Заметьте, что по своим размерам хлоропласты значительно превышают митохондрии, однако число их меньше числа митохондрий. По мере увеличения возраста клетки вакуоль обычно становится крупнее. Клеточная стенка относительно толстая и жесткая. Рис. 2-21. <a href="/info/73091">Электронная микрофотография</a> метки <a href="/info/1302688">листа кукурузы</a>. Заметьте, что по своим размерам хлоропласты значительно превышают митохондрии, однако число их меньше <a href="/info/3579">числа</a> митохондрий. По мере увеличения возраста клетки <a href="/info/311617">вакуоль</a> обычно становится крупнее. <a href="/info/100385">Клеточная стенка</a> относительно толстая и жесткая.

    Органоиды - зто протоплазматические тельца разного размера ядро, пластиды, митохондрии. Ядро содержит нуклеиновые кислоты (ДНК и РНК) оно является центром процессов синтеза, регулирует жизненные функции и служит носителем наследственных свойств клетки благодаря содержащимся в нем хромосомам. Для растений характерно наличие пластид, которые вьшолняют функции, связанные с фотосинтезом, и классифицируются в зависимости от наличия пигментов (см. 8.5.3 и 11.10). Более мелкие тельца митохондрии играют важную роль в дыхательной активности, запасают и передают энергию. В органоидах клетки образуются ферменты - биокатализаторы синтеза органических веществ - и Другие белки возникают в результате клеточного дыхания богатые энергией соединения синтезируются полисахариды и т.д. [c.195]

    Вторая основная категория живых существ — это эукариоты, т. е. организмы, клетки которых содержат истинное ядро. Клетки эукариот крупнее и сложнее по строению, чем клетки прокариот. В ядре, окруженном мембраной, заключена большая часть ДНК, которая таким образом отделена от цитоплазмы. В цитоплазме содержатся различные органеллы, каждая из которых обладает характерной структурой, — митохондрии, лизосомы, центриоли. Клетки эукариот так разнообразны ло размерам и форме и настолько специализированы, что описать типичную клетку практически невозможно. Все же на рис. 1-3 мы попытались изобразить некую усредненную клетку, отчасти животную, отчасти растительную. [c.26]

    Мембраны митохондрий тоньше большинства клеточных мембран — их толщина порядка 5 нм. Методами электронной микроскопии установлено, что внутренние мембраны и кристы покрыты сферическими или полиэдрическими частицами диаметром 8—10 нм, прикрепленными к мембранам ножками, имеющими размер (2—4)Х(4—5) нм . Эти структурные элементы весьма многочисленны, до 10 —Ю в одной митохондрии, и занимают [c.429]

    Геномы мя. вирусов бактерий (бактериофагов), животных и в более редких случаях растений представлены ДНК. Такие клеточные органеллы, как митохондрии и хлоропласты, имеют также свою собственную ДНК размером от неск. десятков до неск. сотен т.п.н. [c.298]

    Размеры митохондрий и размеры полостей, а также часть внутреннего пространства частицы, занятая кристами, непостоянны и варьируют в широких пределах в зависимости от функций органа, из которого взяты митохондрии (сердечная мышца, печень и т, п.). Внутренние мембраны содержат все необходимое для сопряжения энергии переноса электронов с синтезом АТФ. Это фундаментальная функция митохондрий, обязательная для митохондрий всех типов. [c.390]

    Весьма заметное место в цитоплазме эукариотических клеток занимают митохондрии (рис. 2-10). Размеры, внешний вид, число митохондрий, а также место их локализации могут варьировать в очень широких пределах в зависимости от вида клеток. В каждой клетке печени крысы содержится около 1000 митохондрий. Их диаметр составляет примерно [c.36]


    Размеры двуспиральных ДНК характеризуют числом пар нуклеотидов (п. н.), приходящихся на одну макромолекулу. Для клеточных и вирусных ДНК они варьируют в очень широких пределах. Так, например, наиболее изученные бактериальные плазмиды и ДНК многих вирусов и бактериофагов содержат несколько тысяч пар нуклеотидов (т. п.н.), ДНК половых факторов бактерий, митохондрий и хлоропластов — несколько десятков или сотен т. п. н. Размеры хромосом бактерий — несколько миллионов п. и., дрожжей — порядка 10 п. н. Суммарная длина хромосомных ДНК человека составляет около 3-10 п. н. [c.15]

    Уравнение (6.30) дает значение объема 1,4-10" см , который соответствует объему куба с ребром 2,4 мкм. Если мы сопоставим эту величину с объемом клетки (см. табл. 1-2) или органеллы, то увидим, что объем, захватываемый молекулой фермента за 1 с, составляет довольно заметную часть объема небольшой по размеру клетки, митохондрии, хлоропласта и т. д. [c.16]

    Размер митохондрий чаще равен 2—3 мкм в длину и около 1 мкм в диаметре, однако овальную форму митохондрий не следует Рис. 15.3. Схема строения [c.197]

Рис. 12-5. Запасыжиравклетках. . Жировая клетка (адипоцит) из жировой ткани свиньи. Огромные капли жира заполняют практически весь объем клетки. Светлая продолговатая структура с правого края-ядро клетки. Б. Часть крупной капли жира в цитоплазме клетки печени голодающего хомячка. При хорошем кормлении животных в их печени содержится лщдь малое количество мелких жировых капель. При голодании, когда жир становится основным энергетическим ресурсом и транспортируется из жировой ткани в печень, количество и размеры жировых капель значительно возрастают. К поверхности капли примыкают несколько митохондрий, внутри которых происходит окисление жирных кислот. Рис. 12-5. Запасыжиравклетках. . <a href="/info/1278436">Жировая клетка</a> (<a href="/info/508860">адипоцит</a>) из <a href="/info/99577">жировой ткани</a> свиньи. Огромные капли жира заполняют практически весь объем клетки. Светлая продолговатая структура с правого края-<a href="/info/106067">ядро клетки</a>. Б. Часть крупной капли жира в цитоплазме <a href="/info/1434781">клетки печени</a> голодающего хомячка. При хорошем кормлении животных в их печени содержится лщдь малое количество мелких жировых капель. При голодании, когда жир становится основным <a href="/info/1086133">энергетическим ресурсом</a> и транспортируется из <a href="/info/99577">жировой ткани</a> в печень, количество и размеры жировых капель значительно возрастают. К <a href="/info/230614">поверхности капли</a> примыкают несколько митохондрий, внутри которых происходит <a href="/info/590735">окисление жирных</a> кислот.
    У эукариот ДНК в основном сосредоточена в хромосомах, причем, невидимому, в каждой хромосоме содержится одна двунитевая ДНК, размер которой может достигать сотен миллионов пар нуклеотидов. Например, у человека наследственная программа оценивается в 3 10 пар нуклеотидов и сосредоточена в 23 хромосомах, так что в среднем на каждую хромосомную ДНК приходится более ста миллионов пар нуклеотидов. ДНК в хромосомах существует в виде сложного агрегата с большим набором белков — хроматина, описанного в 3.8. Сравнительно небольшие молекулы ДНК, как правило, в несколько десятков тысяч пар нуклеотидов, содержатся в митохондриях. Эти ДНК несут программы для синтеза многих митохондриальных РНК и нескольких митохондриальных белков. Автономные наследственные программы, на порядок большего размера, чем у митохондрий, имеют хлоропласты фотосинтезирующих организмов. Размеры ДНК для некоторых вирусов и живых организмов приведены в табл. 5.1. [c.163]

    Митохондрии входят в состав всех эукариотических клеток. Число митохондрий, их форма и размеры зависят от типа и метаболического статуса клеток. Рис. 1.4. Эукариотическая клетка правило, ЭТИ органеллы по разме- [c.12]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Значительно подробнее строение клетки было изучено при помощи новейшего метода электронной микроскопии [79—84]. Но алектронпых микрофотографиях (3 и 4) митохондрии (размером 0,5 мк — 5 мк X 0,3—0,7 мк) имеют овальные очертания. Каждая митохондрия имеет наружную и внутреннюю мембраны [c.126]

    Биолог. Да, Его называют еще единой энергетической валютой, так как он используется во всех живых организмах и растениях. Видимо, это дань ставшей очень модной сейчас экономике,,. Интересно, что по многим свойствам митохондрии очень похожи на бактерии их характерные размеры составляют несколько десятых микрометра, митохощфии имеют собственную ДНК и могут делиться самостоятельно, независимо от деления самой клетки, но "подстраиваясь" под ее потребности в энергии. Поэтому плотность митохондрий в клетках организма соответствует средней интенсивности процессов метаболизма [Христолюбова, 1977, Лузиков, 1980 Кемп, Арме, 1988], [c.36]


    В эукариотич. клетке все Р. цитоплазмы (как мембраносвязанные, так и свободные) образуются в ядрышке считается, что там они неактивны. Эукариотич. клетка имеет также специальные Р. в митохондриях (у животных и растений) и хлоропластах (у растений). Р. этих органелл отличаются от цитоплазматических размерами и нек-рыми функцион. св-вами. Они образуются непосредственно в этих органеллах. [c.264]

    Цитохромоксидазы выполняют в аэробных организмах уникальную функцию они соединяются с Ог почти таким же образом, как и гемоглобин, а затем быстро восстанавливают Ог до двух молекул НгО [24а]. Происходит разрыв связи О—О для восстановления требуется четыре электрона. Очевидно, процесс этот сложен и пока еще плохо изучен. Важно отметить, что цитохромоксидаза, содержащаяся в митохондриях млекопитающих, имеет два гема (цитохром а) и два атома u(I) на одну функциональную единицу. Таким образом, при восстановлении обеих молекул цитохрома а и двух атомов меди может быть запасено четыре электрона для последующего восстановления одной молекулы Ог. Химия цитохромоксидазы слабо изучена. Как впервые обнаружил Кейлин, только половина молекул цитохрома а соединяется с СО. Она была названа цитохромом аз. По данным электрофореза в полиакриламидном геле с додецилсульфатом натрия, в цитохромоксида-зе дрожжей имеется шесть или семь субъединиц с мол. весом от 5 000 до 42 000 [24Ь, с]. Интересно отметить, что три наиболее крупные субъединицы, по-видимому, кодируются генами митохондриальной ДНК. Группы гема присоединены к пептидам меньшего размера. Было высказано предположение, что в интактном ферменте молекула Ог вначале связывается между атомом железа цитохрома аз и ионом двухвалентной меди aV—Ог—Си+. На следующей стадии происходит двухэлектронный процесс восстановления Ог с образованием перекисной структуры и далее двух молекул воды. [c.376]

    Типичная митохондрия имеет почти такие же размеры, как клетка Е. oli, но вообще форма и размеры этих органелл могут быть весьма различны. Во всех случаях митохондрия образована двумя замкнутыми мембранами наружной и внутренней) каждая толщиной 5—7 нм (рис. 10-9). В печени внутренняя мембрана развита слабо и основная часть пространства заполнена матриксом, а в митохондриях сердечной мышцы внутренняя мембрана имеет значительно больше складок и скорость окислительного фосфорилирования там выше. Ферменты, катализирующие реакции цикла трикарбоновых кислот, тоже более активны в митохондриях сердечной мышцы. Более того, ввиду высокой метаболической активности сердечной мышцы почти треть ее общей массы приходится на долю митохондрий. Типичная митохондрия сердечной мышцы имеет объем 0,55 мк на каждый кубический микрон объема митохондрии приходится 89 мк поверхности внутренних митохондриальных мембран [62]. [c.392]

    Кроме того, эукариотическая клетка имеет специальные рибосомы в таких внутриклеточных органеллах, как митохондрии и, в случае растений, хлорпласты. Рибосомы этих органелл отличаются от цитоплазматических рибосом слегка меньшими размерами, другим химическим составом и некоторыми функциональными свойствами. Они образуются непосредственно в органеллах. [c.52]

    Однако хлоропласты и митохондрии эукариотических клеток содержат рибосомы, отличные от 80S типа. Рибосомы хлоропластов высших растений принадлежат к истинному 70S типу и практически не отличимы от рибосом эубактерий и синезеленых водорослей по вышеприведенным показателям и по более детальным молекулярным характеристикам. Митохондриальные рибосомы более разнообразны в зависимости от принадлежности организма к тому или иному царству эукариот. Наиболее изучены рибосомы митохондрий грибов и млекопитающих. Митохондриальные рибосомы грибов (Sa haromy es, Neurospora) похожи на прокариотические 70S рибосомы, но, может быть, лишь слегка крупнее (около 75S) и содержат относительно больше белка абсолютное содержание рибосомной РНК в них, повидимому, почти такое же, как в типичных 70S рибосомах. Митохондриальные рибосомы млекопитающих, однако, существенно мельче типичных 70S рибосом, имея также и существенно меньшее абсолютное количество рибосомной РНК на частицу их иногда называют мини-рибосомами . Действительно, коэффициент седиментации рибосом из митохондрий млекопитающих составляет всего около 55S, а тотальная масса рибосомной РНК на частицу более чем на 1/3 меньше, чем в типичных 70S рибосомах. В то же время, митохондриальные рибосомы млекопитающих содержат довольно много белка, так что общие размеры их как будто бы не сильно отличаются от таковых прокариотических рибосом. В целом, несмотря на ряд необычных черт, по ряду своих признаков, и в том числе по функциональному поведению, митохондриальные рибосомы млекопитающих все же близки к прокариотическим 70S рибосомам. [c.54]

    S субчастица рибосомы хлоропластов высших растений имеет 16S РНК приблизительно такого же размера (1490 нуклеотидных остатков у Zea mays). РНК малой рибосомной субчастицы митохондрий грибов и высших растений несколько крупнее (1661 нуклеотидный остаток у дрожжей). Наоборот, минирибосомы митохондрий млекопитающих содержат в малой субчастице относительно короткую РНК, обозначаемую как 12S РНК (954—956 нуклеотидных остатков у человека и мыши, соответственно). [c.69]

    Итак, совокупность вышеперечисленных экспериментальных и теоретических подходов дала возможность построить модель вторичной структуры 16S РНК Е. oli, представленную на рис. 42. Почти идентичные модели получены для 16S РНК других бактерий, хлоропластов высших растений и архебактерий. Несмотря на больший размер и гораздо меньшую гомологию последовательности, цепи 18S РНК цитоплазматических 80S рибосом эукариотических организмов могут быть уложены в виде схемы вторичной структуры, очень сходной с таковой 16S РНК бактерий, но 18S содержит добавочные спирали и их группы (рис. 43). Рибосомные РНК уменьшенного размера, а именно 12S РНК митохондрий млекопитающих, также оказались гомологичны бактериальной 16S РНК основная схема их укладки во вторичную структуру совпадает с таковой 16S РНК [c.74]

    Пуклеопротеины состоят из белков и нуклеиновых кислот. Последние рассматриваются как простетические группы. В природе обнаружено 2 типа нуклеопротеинов, отличающихся друг от друга по составу, размерам и физико-химическим свойствам,— дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНН). Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП—дезоксирибозой. Термин пуклеопротеины связан с названием ядра клетки, однако ДНП и РНП содержатся и в других субклеточных структурах. Следовательно, речь идет о химически индивидуальном классе органических веществ, имеющих своеобразные состав, структуру и функции независимо от локализации в клетке. Доказано, что ДНП преимущественно локализованы в ядре, а РНП —в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП. [c.86]

    В препаративной энзимологии чаще пользуются методом дифференциального центрифугирования гомогенатов тканей (рис. 4.26). Для этого сначала разрушают клеточную структуру с помощью подходящего дезинтегратора и полученную квазиоднородную (гомогенизированную) массу подвергают дифференциальному центрифугированию при температуре О—4°С. Обычно распределение ферментов изучают в последовательных индивидуальных фракциях, изолированных при дробном центрифугировании гомогенатов, в частности во фракции ядер, которую получают при низкой скорости центрифугирования, во фракции митохондрий, которая осаждается при средней скорости центрифугирования, во фракции микросом (или рибосом), для изолирования которой требуется высокая скорость центрифугирования, и, наконец, в оставшейся прозрачной надосадочной жидкости (супернатант), представляющей собой растворимую фракцию цитоплазмы. Следует отметить, что фракция митохондрий не является гомогенной, поскольку из нее удается изолировать частицы, известные как лизосомы, размер которьгх занимает промежуточное место между размерами митохондрий и микросом. В свою очередь микросомальная фракция также является гетерогенной, поскольку состоит в основном из элементов эндоплазматической сети неоднородного строения. [c.158]

    Митохондрии фигурируют во всех аэробных клетках животных и растений, за исключением некоторых примитивных бактерий, в которых функции митохондрий выполняет плазматическая мембрана. Число этих органоидов в клетке различно — от 20—24 в сперматозоидах до 500 ООО в клетке гигантской амебы haos haos. Число митохондрий характерно для клеток данного вида, по-видимому, прн митозе происходит деление митохондрий и их правильное расхождение в дочерние клетки. Во многих клетках митохондрии образуют непрерывную сеть — митохондриальный ретикулум. Форма, структура и размеры митохондрий также варьируют. Они всегда обладают системой внутренних мембран, именуемых кристами. На рис. 13.5 схематически изображена структура митохондрии кз печени крысы. Длина ее примерно [c.429]

    Фазово-контрастная микроскопия показывает, что митохондрии живых клеток испытывают изменения размеров и формы, связанные с дыханием. Происходят циклы набухания и сокращения двух типов. Обратимый цикл малой амплитуды, в котором объем меняется на 1—2%, наблюдается у всех видов митохондрий in vitro. Набухание происходит в отсутствие АДФ в состоянии покоя. При добавлении АДФ происходит сокращение и окислительное фосфорилирование АДФ. Цикл блокируется разобщителями окислительного фосфорилирования. [c.431]

    Точность собираемой таким путем информации зависит прежде всего от качества кристаллов в больщинстве случаев достигается разрешение не выше 1,5 — 2 нм. Тем не менее метод позволяет делать выводы о пространственной организаци 1 молекулы, особенно для больших белков, состоящих из нескольких субъединиц. Так, например, в ходе исследования трехмерной структуры цитохром-- -редуктазы — фермента системы окислительного фосфорилирова-ния в митохондриях — удалось установить общую форму молекулы ивзаимное расположение ее субъединиц (рис.53). Размер молекулы фермента в перпендикулярном к плоскости мембраны направлении составляет около 15 нм. Центральная часть молекулы, толщиной около 5 нм, погружена в липидный бислой и составляет около 30% всего белка. С одной стороны мембраны участок молекулы фермента (— 50% всего белка) выступает над плоскостью бислоя на 7 нм, с противоположной стороны 20% белка) — на 3 нм. Фермент присутствует в кристалле в виде димеров наиболее сильный контакт между мономерами наблюдается в центре мембраны. [c.103]

    Митохотгдриями, или хондриосомами, называются органоиды клетки эукариотов, представляющие собой мембранные внутриклеточные образования. Форма и размеры их различны — от овальных и грущевидных телец до нитевидных или ветвистых. Наиболее полно митохондрии изучены у дрожжей и дрожжеподобных грибов в работах М. Н. Мейселя с сотр. [175, 176], в которых показано, что они не отличаются от митохондрий высших организмов. По своему назначению митохондрии представляют собой центры сосредоточения ферментов энергетического обмена. М. Н. Мейсель обнаружил [175], что клетки дрожжей при брожении содержат меньшее число митохондрий, которые гипертрофированы (бродильный тип клеток). Аналогичная картина наблюдается и в аэробных условиях при избытке углеводов в среде, особенно сахарозы и глюкозы. Цитологически наблюдается бродильная перестройка митохондриального аппарата. [c.71]

    Макросконические, или надмолекулярные, механизмы характерны для процессов с участием больших молекул (с молекулярной массой в несколько миллионов) или органелл (микрокристаллов, митохондрий, мембран и т. д.). Если такие частицы обладают большой анизотропией магнитной восприимчивости, то энергия их магнитного взаимодействия с постоянным полем сравнима с тепловой энергией, поэтому такие частицы могут ориентироваться или деформироваться в магнитном поле (подобно тому, как ориентируются жидкие кристаллы). Эффект на примере гипотетического микрокристалла, состоящего из групп —СН2— с магнитной анизотропией )(м 10 см , был оцеиеи Франкевичем [61] такой кристалл ориентируется в иоле Я = 0,1 Т при содержании в нем 10" групп —СН2— это соответствует объему 10 см (или линейным размерам 10 см). [c.44]

    Ферменты проявляют обычно свое каталитическое действие в водных растворах и, следовательно, по этому признаку могут быть отнесены к гомогенным катализаторам. Однако при более тщательном рассмотрении вопроса такое заключение оказывается не вполне точным. Дело в том, что ферменты — это белки с весьма большим молекулярным весом — от десятков до сотен тысяч и, следовательно, при обсуждении свойств многих из них мы вправе говорить о существовании в растворе ферментов поверхности (микроповерхности) раздела, характерной для гетерогенных катализаторов. Более того, каталитическая активность ферментов, как и гетерогенных катализаторов, определяется наличием на их поверхности особых участков ограниченного размера — активных центров, обладающих специфической реакционноспособностью. Многие ферменты, например ферменты переноса электронов в окислительновосстановительных реакциях, ферменты, участвующие в биосинтезе белка, и некоторые другие ферменты функционируют, будучи вмонтированными в сравнительно жесткие структурные компоненты клетки, обладающие макроповерхностью раздела (митохондрии, рибосомы и т. п.). [c.26]

Рис. 2-14. Лизосомы и пероксисомы-это мешки с ферментами. А. Часть клетки коры надпочечника. Темные овальные тельца различной формы-это лизосомы. По своим размерам они меньше митохондрий. Лизосомы содержат более 40 гидролитических ферментов кроме того, в них иногда обнаруживаются складки излишней мембраны, в которых находятся белки и другие компоненты клетки. Б. Пероксисома. Кристаллическое вещество - это уратоксидаза, один из нескольких содержащихся в пероксисо-мах ферментов, образующих перекиси. Рис. 2-14. Лизосомы и <a href="/info/102291">пероксисомы</a>-это мешки с ферментами. А. Часть клетки <a href="/info/566796">коры надпочечника</a>. Темные овальные тельца <a href="/info/1841315">различной</a> формы-это лизосомы. По своим размерам они меньше митохондрий. Лизосомы содержат более 40 <a href="/info/31294">гидролитических ферментов</a> кроме того, в них иногда обнаруживаются складки излишней мембраны, в которых находятся белки и <a href="/info/1689268">другие компоненты</a> клетки. Б. <a href="/info/102291">Пероксисома</a>. <a href="/info/132707">Кристаллическое вещество</a> - это <a href="/info/104644">уратоксидаза</a>, один из нескольких содержащихся в пероксисо-мах ферментов, образующих перекиси.
    СЯ В цитоплазме клетки (рис. 2-14). Размеры их варьируют, но, как правило, не превьппают размеров митохондрий. Лизосомы содержат много различных ферментов, способных переваривать, т. е. расщеплять путем гидролиза, уже ненужные клеточные белки, полисахариды и липиды. Поскольку такие ферменты могут разрушить и остальное содфжи-мое клетки, они заключены в лизосомы. Белки и другие компоненты, которые необходимо разрушить, избирательно переносятся внутрь лизосом, где подвергаются гидролитическому расщеплению до простейших составных частей, поступающих затем обратно в цитоплазму. [c.40]

    Малые размеры клеток и их составных частей. Из данных, приведенных в табл. 2-2, приблизительно рассчитайте число а) клеток печени, б) митохондрий и в) молекул миотлобина, которые можно поместить в один слой на кончике булавки (диаметром 0,5 мм). Предполагается, что все структуры имеют сферическую форму. Площадь круга равна пг , где rt = 3,14. [c.53]

    Рассмотренные нами биомолекулы, играющие роль строительных блоков, имеют очень небольшие размеры по сравнению с биологическими макромолекулами. Например, длина молекулы такой аминокислоты, как аланин, составляет менее 0,7 нм, тогда как в эритроцитах типичный белок гемоглобин, осуществляющий перенос кислорода, состоит примерно из 600 аминокислотных единиц, соединенных в длинные цепи, уложенные в виде глобулярных структур. Молекулы белков, в свою очередь, малы по сравнению, например, с рибосомами-субмолекулярными частицами, содержащимися в тканях животных. В состав каждой из них входит приблизительно 70 различных белков и четыре молекулы нуклеиновой кислоты. Рибосомы, в свою очередь, малы по сравнению с такими ор-ганеллами, как митохондрии. Таким образом, переход от простьЬс биомолекул к более крупным субклеточным структурам происходит скачкообразно. [c.70]

    Нормальные эритроциты человека представляют собой небольшие по размерам (6-9 мкм) двояковогнутые диски (рис. 8-15). В них нет ни ядра, ни митохондрий, ни эндоплазматического ретикулума, ни каких-либо других органелл. Эритроциты образуются из клеток-пред-шественников, называемых реттулоци-тами. В процессе созревания ретикуло- [c.205]

    Кроме ДНК, обнаруживаемой в ядре эукариотических клеток, в цитоплазме также присутствует очень небольшое количество ДНК, отличающейся от ядерной по нуклеотидному составу эта цитоплазматическая ДНК локализована в митохондриях. Хлоропласты фотосинтезирующих клеток также содержат ДНК. Обьлно в покоящихся соматических клетках ДНК этих органелл составляет менее 0,1% всей клеточной ДНК, однако в оплодотворенных и делящихся яйцеклетках, где число митохондрий сильно увеличено, количество митохондриальной ДНК значительно выше. Митохондриальные ДНК (мДНК)-это двухцепочечные кольцевые молекулы очень малого по сравнению с молекулами ДНК ядерной хромосомы размера. В животных клетках мДНК имеет мол. массу всего 10 -10 . Молекулы хлоро-пластной ДНК значительно больше ДНК митохондрий. ДНК обеих этих органелл не связана с гистонами. [c.876]

    Повторное и хроническое отравление. Животные. При ингаляции 1,2-Д. в концентрации 400 млн в течение 120—140 дней по 7 ч ежедневно у крыс не выявлено токсического действия. В этих же условиях у мышей отмечалась высокая смертность ( ah. notes... ). При постоянной ингаляции 1,2-Д. в течение 30 сут концентрация 10 мг/м была близка к пороговой. У крыс увеличивалась активность глюкозо-6-фосфатазы, арилсульфатазы, АТФ-азы. При 60 сут воздействии в печени увеличивалось число и размеры гепатоцитов, регистрировалась ферментная дезорганизация мембранных структур, повышалась активность инозин-5-фосфа-тазы и АТФ-азы, увеличивалась концентрация N-ацетилнейрами-новой кислоты в митохондриях и лизосомах печени. В легких увеличивалось число макрофагов, изменялся эндотелий легочных капилляров и дыхательных альвеолоцитов (Меркурьева и др.). При 90-суточной ингаляции 1,2-Д. (10 мг/м ) у крыс к концу экс- [c.395]


Смотреть страницы где упоминается термин Митохондрия размеры: [c.7]    [c.270]    [c.270]    [c.531]    [c.578]    [c.188]    [c.402]    [c.73]    [c.36]    [c.37]    [c.396]    [c.929]   
Биохимия Том 3 (1980) -- [ c.392 ]




ПОИСК







© 2025 chem21.info Реклама на сайте