Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрии строение

Рис. 6. Митохондрия а — схема строения, б — продольный разрез Рис. 6. Митохондрия а — <a href="/info/325342">схема строения</a>, б — продольный разрез

    Форма и строение митохондрий у различных микроорганизмов неодинаковы. Даже у одной и той же культуры при различных условиях и фазах роста форма и величина митохондрий меняется. В клетках дрожжей, перенесенных из аэробных условий в анаэробные, митохондрии теряют выраженную форму и образуются мембраны неопределенной формы. В бактериях функцию митохондрий выполняют особые образования цитоплазматической мембраны — мезосомы. Следовательно, в клетках бактерий аналогами митохондрий являются мезосомы. Как число митохондрий, так и число мезосом меняется, оно резко возрастает перед процессом деления клетки. Мезосомы бактерий специализируются в выполнении различных функций. Некоторые из них [c.19]

Рис. 9-11. Схема сопряженных реакций, превращающих пируват в ацетил-СоА в матриксе митохондрий. Строение большого ферментного комплекса, катализирующего эти реакции, показано на рис. 2-40. Рис. 9-11. Схема <a href="/info/306497">сопряженных реакций</a>, превращающих пируват в ацетил-СоА в <a href="/info/101341">матриксе митохондрий</a>. <a href="/info/1494624">Строение большого</a> <a href="/info/509465">ферментного комплекса</a>, катализирующего эти реакции, показано на рис. 2-40.
Рис. 2. Схема строения митохондрии. Рис. 2. <a href="/info/325342">Схема строения</a> митохондрии.
    Перенос электронов от субстратов цикла трикарбоновых кислот к кислороду, сопровождающийся образованием воды, осуществляется сложной полиферментной системой, локализованной во внутренней мембране митохондрий. Последовательность функционирования отдельных дыхательных переносчиков в значительной мере была выяснена благодаря применению ингибиторного анализа, а также спектрофотометрических исследований. В настоящее время строение дыхательной цепи может быть представлено схемой на рис. 51. [c.435]

    Вторая основная категория живых существ — это эукариоты, т. е. организмы, клетки которых содержат истинное ядро. Клетки эукариот крупнее и сложнее по строению, чем клетки прокариот. В ядре, окруженном мембраной, заключена большая часть ДНК, которая таким образом отделена от цитоплазмы. В цитоплазме содержатся различные органеллы, каждая из которых обладает характерной структурой, — митохондрии, лизосомы, центриоли. Клетки эукариот так разнообразны ло размерам и форме и настолько специализированы, что описать типичную клетку практически невозможно. Все же на рис. 1-3 мы попытались изобразить некую усредненную клетку, отчасти животную, отчасти растительную. [c.26]


Рис. 2.1. Комбинированная схема строения эукариотической (растительной) клетки (по Зитте). Вак вакуоли Д-диктиосомы КСт-клеточная стенка Ли — липидные капельки Мыт-митохондрии Мтр-микротрубочки Я-поры с плазмодесмами ПМ-плазматическая мембрана СП-секреторные пузырьки (экзоцитоз) X/i-хлоропласты ДЯ г-цитоплазма Я-ядро. Рис. 2.1. <a href="/info/970018">Комбинированная схема</a> <a href="/info/1890489">строения эукариотической</a> (растительной) клетки (по Зитте). Вак вакуоли Д-диктиосомы КСт-<a href="/info/98958">клеточная стенка</a> Ли — липидные капельки Мыт-митохондрии Мтр-микротрубочки Я-поры с плазмодесмами ПМ-<a href="/info/101065">плазматическая мембрана</a> СП-секреторные пузырьки (экзоцитоз) X/i-хлоропласты ДЯ г-цитоплазма Я-ядро.
    РИС. 10-9. А. Схема строения митохондрии. . Модель организации частиц в митохондриальных мембранах, основанная на электронно-микроскопических снимках сколов [c.395]

    Другая цепь, называемая отстающей, имеет противоположное направление и обозначается 3 5. Двойная спираль характерна для большинства молекул ДНК. Тем не менее молекула ДНК может иметь не только двухспиральное строение, но и односпиральное, кольцевое, например, в вирусах, митохондриях. [c.46]

    Размер митохондрий чаще равен 2—3 мкм в длину и около 1 мкм в диаметре, однако овальную форму митохондрий не следует Рис. 15.3. Схема строения [c.197]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]

    Строение и свойства митохондрий [c.429]

    Изучение структуры мембран митохондрий методами рант-гено-структурного анализа и электронной микроскопии позволило сделать заключение, что темные слои стенок мембраны (рис. 3,1/) соответствуют слоям белка, а более светлые — бимолекулярным слоям липоидов. Общая картина строения мембранных стенок митохондрий в настоящее время представляется такой, какой она показана а рисунке 2>,VI. Каждая мембрана состоит из двух слоев белковых молекул и заключенных между ними двух слоев липидов. На этих белковых и липидных слоях адсорбированы ферменты, которые катализируют биохимические реакции в митохондриях. [c.30]

    При рассмотрении строения клеточных структур (глава И) мы видели, что митохондрии представляют трехслойные мембраны с внутренними перегородками (рис. 2 и 3). На этих мембранах адсорбированы ферменты, катализирующие различные процессы обмена веществ. В настоящее время считается, что перенос электронов и водорода от НАД Нг на кислород может происходить в митохондриях двумя путями, из которых только один сопряжен с фосфорилированием, а другой не сопровождается синтезом АТФ. Эти два пути окисления НАД-Нг в митохондриях пространственно разграничены процессы окислительного фосфорилирования локализованы внутри митохондрий, а свободное окисление без фосфорилирования — на их поверхности. В соответствующих участках митохондрий имеются и соответствующие ферментные системы, катализирующие тот или иной процесс. Эти два пути окисления веществ отличаются не только местоположением, но и различной чувствительностью к специфическим ингибиторам и активаторам. [c.174]

    Регенерация АТР из ADP и Pj. Синтез АТР из ADP и неорганического фосфата (Pi) катализируется АТР-синтазой. Этот фермент преобразует доставляемую потоком электронов энергию в энергию фосфо-эфирных связей АТР. Фермент найден во всех мембранах, участвующих в преобразовании энергии, а именно в мембранах митохондрий, хлоропластов и бактерий. Он достаточно велик (мол. масса 350-10 ) и имеет сложное строение (рис. 7.12, Г)-состоит из головки, построенной из нескольких субъединиц, ножки и основания последнее погружено в липидный слой плазматической мембраны. АТР-синтаза катализирует присоединение фосфата к ADP с отщеплением молекулы воды, в результате чего образуется АТР. Каким образом поток протонов или протонный градиент осуществляет эту реакцию фосфорилирования, пока еще неизвестно возможно, что протоны по какому-то каналу или поре в молекуле фермента оттекают обратно внутрь митохондрии или бактерии, а освобождающаяся при этом энергия используется для фосфорилирования. [c.245]

    Химическое строение активной формы уксусной кислоты долгое время оставалось неясным только в последние годы удалось расшифровать структуру этого соединения. Вместе с тем был выяснен и механизм окислительного декарбоксилирования пировиноградной кислоты у некоторых микроорганизмов. [Установлено, что декарбоксилирование пировиноградной кислоты, сопровождающееся поглощением кислорода, катализируется сложной системой, в состав которой входит особая дегидрогеназа, коферменты (тиаминпирофосфат, липоевая кислота, коэнзим А, НАД) и система ферментов — катализаторов тканевого дыхания. Вся эта система локализована в митохондриях. [c.274]


    РИС. 13-28. А. Схема строения палочки сетчатки позвоночных [135]. НЧ — наружный членнк СР — соединительная ресничка М — платно упакованные митохондрии Я — ядро СО — синаптическое окончание. Б. Электронная микрофотография продольного среза наружного членика палочки в сетчатке крысы (с любезного разрешения [c.62]

    Хлоропласты и митохондрии эукариотич. клеток содержат Р., отличные от типа 80S. Р. хлоропластов высших растений принадлежат к истинному 70S типу. Митохондриальные Р. более разнообразны их строение находится в зависимости от таксономич. принадлежности организма (т.е. от принадлежности к определенному виду, роду шш семейству). Напр., митохондриальные Р. млекопитающих существенно мельче типичных 70S Р. коэф. седиментации этих Р. составляет ок. 55S (т. наз. минирибосомы). [c.264]

    В препаративной энзимологии чаще пользуются методом дифференциального центрифугирования гомогенатов тканей (рис. 4.26). Для этого сначала разрушают клеточную структуру с помощью подходящего дезинтегратора и полученную квазиоднородную (гомогенизированную) массу подвергают дифференциальному центрифугированию при температуре О—4°С. Обычно распределение ферментов изучают в последовательных индивидуальных фракциях, изолированных при дробном центрифугировании гомогенатов, в частности во фракции ядер, которую получают при низкой скорости центрифугирования, во фракции митохондрий, которая осаждается при средней скорости центрифугирования, во фракции микросом (или рибосом), для изолирования которой требуется высокая скорость центрифугирования, и, наконец, в оставшейся прозрачной надосадочной жидкости (супернатант), представляющей собой растворимую фракцию цитоплазмы. Следует отметить, что фракция митохондрий не является гомогенной, поскольку из нее удается изолировать частицы, известные как лизосомы, размер которьгх занимает промежуточное место между размерами митохондрий и микросом. В свою очередь микросомальная фракция также является гетерогенной, поскольку состоит в основном из элементов эндоплазматической сети неоднородного строения. [c.158]

    Число остатков изопрена в боковой цепи убихинона из разных источников варьирует от 6 до 10, что обозначают как KoQ , KoQ, и т.д. В митохондриях клеток человека и животных встречается убихинон только с 10 изопреновыми звеньями. Как и близкие к нему по структуре витамины К и Е, убихинон нерастворим в воде. В хлоропластах растений открыто близкое к убихинону соединение пластохинон, который отличается строением бензольного кольца вместо двух метоксильных остатков содержатся две метальные группы и отсутствует Hj-rpynna у 5-го углеродного атома. [c.243]

    Строение и функциональная организация митохондрий явились предметом интенсивного изучения. Тем не менее, многие важнейшие вопросы, сюда относящиеся, пока не имеют ответа. Специфическая мембранная структура митохондрий, присутствие в них автономной программы синтеза белков (ДНК), механохи-мйческая активность митохондрий непосредственно связаны с их ролью силовых станций клетки. [c.429]

    Электроны с восстановленных переносчиков (НАД Нз, НАДФ Нз, ФАД Нз), образующихся при функционировании ЦТК или окислительного пентозофосфатного цикла, поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее соверщенном виде и единообразии дыхательная цепь предстает у эукариот, где она локализована во внутренней мембране митохондрий. У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании. [c.360]

    Помимо ядра и митохондрий в клетках эукариот существует и функционирует значительное число других органелл. Среди них следует в первую очередь упомянуть систему эндоплаэматическою ретикулума, которая представляет собой большое число ограниченных мембранами слоев, пузырьков, трубочек. Мембраны андоплазматического ретикулума oбpaзyютJ по-видимому, единую систему, связанную также с ядерной мембраной. Различают гладкий эндоплазматический ретикулум, имеющий трубчатое строение, в котором происходит в основном метаболизм липиДов. Кроме того, широко представлен шероховатый эндоплазматический ретикулум, на внешних поверхностях которого закреплены рибосомы. На этих рибосомах происходит синтез многочисленных мембранных белков. [c.434]

    Липопротеины составляют большую группу сложных белков. Эти макромолекулы в значительных количествах находятся в митохондриях, из них в основном состоит эндоплазматический ретикулум, их обнаруживают и в плазме крови, и в молоке. Как правило, липопротеины — это большие молекулы. Их молекулярная масса достигает миллиона дальтон. Гидрофильность белковой и гидрофобность простетической группы липопротеинов определяют ту роль, которую они играют в процессах избирательной проницаемости. Липиды, входящие в состав липопротеинов, отличаются по строению и биологическим свойствам. В частности, в составе липопротеинов открыты нейтральные липиды, фосфолипиды, холестерин и др. Липидный компонент соединяется с белком при помощи нековалентных связей различной природы. Так, нейтральные липиды соединяются с белком посредством гидрофобных связей. Если же в образовании липопротеина участвует фосфолипид, то он взаимодействует с белком при помощи ионных связей. [c.48]

    У эукариот вьщеляют следующие основные группы мембран плазматическую, ядерную, эндоплазматического ретикулума, митохондрий, хлоропластов, возбудимые мембраны, миелиновые оболочки аксонов, нейронов и др. Несмотря на то что каждый тип мембран отличается по химическому составу и строению, выполняет специфичекие функции, мембраны имеют общие структурные особенности и построены по единому типу [c.302]

    Два флавопротеидных фермента, играющих большую роль в дыхательной цепи, выделены в очищенном состоянии. Это сукцинатдегидрогеназа и НАД-Нг-цитохром-с-редуктаза. Сукцинатдегидрогеназа получена в виде почти гомогенного фермента из митохондрий бычьего сердца. Она содержит одну молекулу ФАД и 4 атома негеминового железа на молекулу фермента. Сукцинатдегидрогеназа катализирует восстановление сукцинатом феназинметасуль-фата и феррицианида метиленовый синий, цитохром с и кислород не восстанавливаются. НАД-Нг-цитохром-с-редуктаза выделена из сердечной мышцы и из частиц, переносящих электроны (см. стр. 225). Как и сукцинатдегидрогеназа, она содержит одну молекулу флавина (точное химическое строение его неизвестно) и 2—4 атома негеминового железа на молекулу фермента. Негеминовое железо у этих двух ферментов, вероятно, играет важную роль в восстановлении цитохрома с. Показано [3], что негеминовое железо в НАД-Нг-Цитохром-с-редуктазе во время катализа претерпевает восстановление и окисление. Недавно из растений были получены растворимые препараты сукцинатдегидрогеназы, а из митохондрий проростков гороха и из початка Arum в частично очищенном виде получена растворимая НАД-Нг-цитохром-с-редуктаза. [c.212]

    Фракционирование клеток в солевом растворе осложняется тенденцией гранул образовывать скопления и осаждаться в виде комков, а не в виде отдельных частиц. Это нежелательное явление можно предотвратить, измельчая клетки в 0,88 М растворе сахарозы, в котором митохондрии сохраняют палочковидное строение и способность к суправитальному окрашиванию янусом зеленым В. Однако при указанной концентрации сахарозы среда становится настолько вязкой и плотной, что для осаяедения субклеточных фракций приходится использовать чрезвычайно высокие скорости центрифугирования. Поэтому в современных исследованиях в качестве среды для измельчения клеток используют 0,25 М раствор сахарозы, в котором не происходит агрегации гранул и легко выделяется фракция митохондрий. Последние при этом обладают теми я е биохимическими свойствами, что и митохондрии, получаемые в 0,88 М растворе сахарозы, хотя они уяге не окрашиваются янусом зеленым В и имеют скорее шаровидную, а не удлиненную форму. При разделении путем дифференциального центрифугирования субклеточных фракций из гомогената в 0,25 М растворе сахарозы, полученного в гомогенизаторе Поттера — Эльвейема, удаление ядер и клеточных обломков, включая [c.130]

    Еще одно важное различие между эукариотами и прокариотами состоит в том, что эукариотические клетки, кроме организованного ядра, содержат целый рад других ограниченных мембранами внутриклеточных органелл, таких, как митохондрии, эндоплазматический ретикулум и тельца Гольджи. Каждая из этих органелл выполняет специфические функции в метаболизме и жизнедеятельности клетки. На рис. 2-7 показана типичная эукариотическая клетка-клетка печени крысы, имеющая необычайно сложное внутреннее строение с высокой степенью ковлпартментации. Как мы увидим в дальнейшем, эукариотичёским клеткам свойственно более тонкое разделение функций между содержащимися в них многочисленными структурными элементами, каждый из которых играет специфическую роль в жизнедеятельности клетки. [c.33]

    Клеточные ядра, хлоропласты, митохондрии и микросо.мы— это очень сложные структурные образования. В различных клеточных структурах и в основном веществе цитоплазмы главнейшими структурными элементами, которые определяют характер их строения, являются мембраны. Они есть во всех клеточных структурах и определяют многие специфические свойства леточных структур. [c.28]

    Значительно подробнее строение клетки было изучено при помощи новейшего метода электронной микроскопии [79—84]. Но алектронпых микрофотографиях (3 и 4) митохондрии (размером 0,5 мк — 5 мк X 0,3—0,7 мк) имеют овальные очертания. Каждая митохондрия имеет наружную и внутреннюю мембраны [c.126]


Смотреть страницы где упоминается термин Митохондрии строение: [c.444]    [c.185]    [c.415]    [c.291]    [c.341]    [c.368]    [c.24]    [c.13]    [c.402]    [c.621]    [c.692]    [c.168]    [c.185]    [c.182]    [c.29]    [c.32]    [c.19]    [c.248]    [c.243]    [c.248]   
Курс физиологии растений Издание 3 (1971) -- [ c.50 ]

Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.13 , c.14 ]

Физиология растений (1989) -- [ c.21 ]

Физиология растений (1980) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Строение и свойства митохондрий



© 2025 chem21.info Реклама на сайте