Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гадолиний соединения

    Металлы — железо, кобальт, никель, гадолиний, диспрозий и некоторые из их сплавов и соединений являются ферромагнитными при температуре ниже критической для каждого соединения. Причина ферромагнетизма до объяснения ее квантовой механикой была неизвестна. Вопрос заключается в том, почему электроны на неполностью заполненных оболочках выстраиваются в направлении приложенного поля и почему они сохраняют эту ориентацию даже после снятия магнитного поля Объясняется это тем, что низшим энергетическим состоянием для некоторых твердых тел является состояние, в котором спины электронов параллельны, а не антипараллельны, как, например, для двух электронов в молекуле водорода. Ферромагнетизм возможен только при определенных межатомных расстояниях и определенных радиусах -орбиталей, поэтому он наблюдается лишь для некоторых элементов. Ферромагнитные вещества проявляют гистерезис в магнитных свойствах. Это означает, что магнитный момент зависит от магнитной предыстории образца кривые зависимости магнитного момента от напряженности магнитного поля различны для случаев, когда магнитное поле увеличивается или уменьшается. [c.497]


    Сначала на основе ортованадата иттрия, а затем окиси иттрия, активированной европием, создан красный люминофор для кинескопов цветного телевидения с большой интенсивностью излучения [8]. Чрезвычайно перспективно использование неодима в фильтрах цветного телевидения. Важную роль играют соединения РЗЭ в создании квантовых усилителей и генераторов оптического диапазона, где они используются в качестве активаторов [21]. Для изготовления твердых лазеров находят применение окислы лантана, гадолиния, [c.88]

    Положение лантанидов в периодической системе. Структура электронной оболочки атомов лантанидов. Особое положение гадолиния и лютеция. Валентность лантанидов. Восстановительная активность. Отношение к кислороду, воде и кислотам. Окислы и гидроокиси лантанидов. Окраска и парамагнитные свойства ионов. Лантанидное сжатие. Наиболее важные соли. Разделение ионов лантанидов. Комплексные соединения. [c.333]

    К числу ферромагнетиков относятся железо, никель, кобальт, редкоземельные металлы от гадолиния до тулия, их соединения, сплавы, а также сплавы хрома и марганца и др. Особенностью ферромагнитных веществ является большое значение [х, а также то, что они сохраняют намагничивание и после того, как намагничивающее поле прекратило свое действие магнитная проницаемость (X и коэффициент % для них не являются постоянными [c.288]

    Наконец, многие РЗЭ имеют большое сечение захвата нейтронов и применяются в атомной технике для поглощения тепловых нейтронов в целях управления работой реакторов и для защиты от их избытка при потере нормального режима работы реактора. В этих целях, например, используют [16] гадолиний и его соединения (сечение захвата нейтронов 44 000 барн). [c.82]

    КЮРИЙ ( urium, назван в честь П. Кюри и М. Склодовской-Кюри) m — химический элемент, п. н. 96, относится к семейству актиноидов. К. искусственно получен в 1944 г. Сиборгом, Джеймсом и Гиорсо (США). Известно 13 радиоактивных изотопов. Массовое число самого стойкого изотопа 247 (период полураспада 4 10 лет . Несколько миллиграммов К. получено восстановлением СтРз барием. Металлический К. имеет т. пл. 1300° С. В соединениях К. трехвалентен, по свойствам является аналогом гадолиния. [c.143]

    Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий от тепловых нейтронов в ядерных реакторах. Соединения лантаноидов входят в состав красок, лаков, люминофоров (светящиеся составы), катализаторов. [c.447]

    Двойные нитраты легких РЗЭ с магнием кристаллизуются из водных растворов, самария, европия и гадолиния — из азотнокислых растворов. В маточных растворах при этом остаются тяжелые РЗЭ. Для разделения тяжелых РЗЭ (от 0с1 до Ти) до применения ионного обмена лучшим был метод дробной кристаллизации броматов. Этим методом получали богатые концентраты отдельных элементов, используя уменьшение растворимости соединений в ряду, от Ьа к Ьи [55].  [c.107]


    Заполнение уровня 4f происходит таким образом, что для первых семи элементов (от церия до гадолиния) спины электронов параллельны, а для последующих элементов (от тербия до лютеция) заполнение уровня электронов происходит таким образом, что спины электронов антипа-раллельны относительно первых. Такой порядок заполнения электронами уровня 4/ и является физической основой деления элементов на цериевую и иттриевую подгруппы. Эти подгруппы элементов различаются между собой химическими свойствами, в частности, растворимостью их соединений, способностью к комплексообразованию. [c.191]

    Еще раньше керамику с добавкой редких земель пытались использовать в качестве теплозащиты в атомных реакторах. Здесь нути церия и его аналогов разошлись. Если соединения других лантаноидов, прежде всего самария, европия и гадолиния, интересны тем, что они активно захватывают тепловые нейтроны, то соединения [c.129]

    СКАНДИЙ (S andium, от названия Скандинавия) S — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 21, ат. м. 44,9559. С. имеет один стабильный изотоп, известны 10 радиоактивных изотопов. Существование С. было предсказано Д. И. Менделеевым в 1870 г. Он подробно описал свойства С. и условно назвал его экабором. В 1879 г. С. был открыт шведским ученым Нильсоном в минерале гадолините, впервые найденном в Скандинавии. Содержится С. во многих минералах как примесь. С.— серебристый металл с характерным желтым отливом, т. пл. 1539° С. С. химически активен, при обычных условиях реагирует с кислородом, а при нагревании с водородом, азотом, углеродом, кремнием и т. п. растворяется в минеральных кислотах в соединениях С. проявляет степень окисления +3. С. извле-каЕот при переработке уранового, вольфрамового, оловянного сырья, также из отходов производства чугуна. С. применяют в виде сплавов для изготовления ферритов с малой индукцией (лля быстродействующих вычисл тельыых машин), [c.229]

    Актуальность отмеченной выше проблемы проверки м(1де лей структур очень часто связана с вопросом правильной интерпретации сведений о фазовых диаграммах. Одним из распространенных вариантов взаимодействия между компо нентами является образование фаз со структурой, не известной ни для одлого из компонентов системы, но существующей у соединений близкого химического состава с другими элементами. Долгое время образование таких фаз опис1лва лось в терминах стабилизации не существующих в чистом виде модификаций, высокотемпературных фаз и т.д. Подобную интерпретацию обычно можно рассматривать как первый шаг к решению проблемы. Более детальное изучение вопроса обычно позволяет выяснить особенности таких стабилизированных фаз. Рентгенография является одним из возможных методов, применяемых для-изучения стабилизированных фаз, причем для получения правильных результатов требуется не только анализ дифракционной картив1ы до стадии определения параметров элементарной ячейки (а иногда субъячейки), но и проверка возможных моделей структуры. В качестве примера можно привести систему СаО - 1/ l2 О У оксида гадолиния в сопредельном интервале температур существует моноклинная модификация со структурой В - S ГП2 Oj. В системе с оксидом кальция монок линная фаза существует вплоть до комнатной температуры. Детальное изучение строения этих фаз показало, что они имеют общую [c.201]

    В 1886 г. Мариньяк выделил из солей самария соединения нового элемента — гадолиния (назван в честь Гадолина, положившего начало открытию РЗЭ). [c.65]

    Применение скандия, РЗЭ и их соединений. Металлический скандий применяется как фильтр нейтронов в ядерной технике и как легирующий металл в черной и цветной металлургии. Добавка 1% иттрия к нержавеющим сталям повышает температуру их окисления до 1200—1300 °С. Кроме того, применительно к магниевым и алюминиевым сплавам иттрий является хорошим упроч-иителем. Лантаноиды, несмотря на сравнительно высокую стоимость, нашли применение в атомной технике, электронике, электро- и радиотехнике, а также в черной и цветной металлургии. В атомной технике применяются лантаноиды с большими сечениями захвата нейтронов (гадолиний, самарий, европий). Церий и мишметалл входят в состав геттеров. Кроме того, церий широко применяется для легирования сталей, чугуна, алюминиевых, магниевых и других сплавов. [c.179]

    Галогениды кюрия имеют состав СтГз и известны для всех галогенов. Действием фтора на кюрий или СтРз можно получить оливково-зеленый Стр4. Галогениды кюрия образуют комплексы с га-логенидами щелочных металлов. Достаточно хорошо изучены комплексные соединения кюрия с такими лигандами, как N0.7, СаО , 50 , С1 5 и др., которые напоминают соответствующие производные европия и гадолиния, а также предшествующего америция. Особая устойчивость степени окисления +3 для кюрия лежит в основе методов его отделения от Ри и Ат. [c.447]

    Некоторые лантаноиды, кроме валентности 1П, проявляют также валентность IV (Се, Рг, ТЬ) и II (Sm, Eu, Yb). Эти аномальные валентности объясняются различиями энергетических состояний на подуровне 4/. Легко проявляемая церием валентность IV объясняется неустойчивостью 4/-подуровня. У церия появляются электроны на 4/-подуровне. Можно допустить, что они довольно непрочно закреплены на подуровне, поэтому сравнительно легко отрываются, образуется ион Се +. Структура иона Се + идентична структуре La , а та в свою очередь подобна устойчивой структуре инертного газа ксенона. У следующего за церием празеодима на 4/-подуровне уже больше электронов. Атом Рг теряет два электрона с подуровня 6s и легко один электрон с подуровня 4/ второй /-электрон теряется с большим трудом. Поэтому празеодим проявляет валентность IV в достаточно жестких условиях, например, при прокаливании на воздухе до 700°. Европий и самарий, стоящие перед гадолинием (электронная структура которого очень устойчива), в определенных условиях проявляют валентность ниже трех, а именно II. Европий теряет только два электрона с подуровня 05, что дблзет структуру иона сходной с устойчивой структурой иона Qd +. Электронная структура иона Sm + приближается к структуре иона Qd +, но не становится идентичной. В результате соединения самария (II) менее устойчивы, чем такие же соединения европия. У тербия на подуровне 4/ девять электронов. В определенных условиях тербий способен терять не только два электрона с подуровня 6s он еще может терять два электрона с подуровня 4/, что делает электронную структуру его иона сходной со структурой иона Qd +. Наконец, иттербий, подобно европию, может быть не только трех-, но также и двухвалентным. После потери его атомом двух электронов с подуровня 6s возникает ион сходный по структуре с устой- [c.47]


    Гадолиний (лат. Gadolinium, по имени финского химика Гадолина). Г.— элемент III группы 6-го периода периодич. системы Д. И. Менделеева, лантаноид, п. н. 64, атомная масса 157, 25. Открыт в 1880 г. Ж. Мариньяком, В соединениях Г. проявляет степень окисления -j-3, образует оксид GdaOs, Соли Г. бесцветны. Хло- [c.34]

    Белый мягкий пластичный металл. Во влажном воздухе покрывается оксидно-гидроксидной пленкой. Пассивируется в холодной воде не реагирует со щелочами, гидратом аммиака. Сильный восстановитель реагирует с горячей водой, кислотами, хлором, серой. Ион 0(1 бесцветен. Соединения гадолиния по химическим свойствам подобны соединениям лантана. Получение — термическое восстановление 0<120з кальцием, электролиз раствора 0<1С1з. [c.332]

    Уже отмечалось (разд. 5.3.5), что в идеальной структуре НеОз (рис, 13,3,6) октаэдры могут быть повернуты друг относительно друга, так что в итоге образуется структура АХз с ГПУ, В структуре перовскита существует такой же октаэдрический каркас, и поэтому октаэдры в этой структуре также могут быть повернуты различными способами с образованием типов координационного окружения атомов А, отличающихся от кубооктаэдра (координационное число 12) в идеальной кубической структуре. Например, в соединении ОёРеОз [2] КЧ гадолиния понижено до 8 (слегка искаженная двухщапочная тригональная призма), в то время как в некоторых оксидах АСзВ4012 (разд. 13.3.2) координационное число атомов А остается равным 12, но полиэдр приобретает форму икосаэдра, а КЧ атомов С понижается до 8. (В этой связи см. также рнс. 4.4, а и описание структуры СоАзз в разд. 6.6), Такие разновидности структур перовскита имеют более низкую симмет- [c.301]

    Гидроксиды лантана, иттрия [3], празеодима, неодима, самария, гадолиния, тербия, диспрозия, эрбия и иттербия, а также Ат(ОН)з [4] кристаллизуются с образованием типпчпо ионных структур, в которых каждый атом металла окружен девятью ионами ОН", а каждый ион ОН —тремя ионами V +. Такую же структуру, изображенную на рис. 9.8 (разд. 9.9.3), имеет описанное ранее соединение U b в этой структуре координационный полиэдр атома металла имеет форму трехшапочной тригональной призмы. Методом нейтронографии [5] были определены позиции атомов дейтерия в соединении La(OD)a. На рис. 14.2 все атомы (включая дейтерий) лежат на высоте с/4 или Зс/4 над или под плоскостью чертежа (с = 3,86 А). Из [c.356]

    Саркар сообщил об октагидрате перхлората гадолиния, очень расплывающемся соединении, и описал его. Были определены спектр Рамана , кажущаяся молекулярная рефракция, дисперсия, объем и парциальный молекулярный объем перхлората лантана в водном растворе . [c.58]

    Усовершенствованный процесс, разработанный , Гуссетом патент США 4 198231, 15 апреля 1980 г. фирма Свисс Алюминиум Лтд. , Швейцария), предназначен для выделения галлия и гадолиния из отходов, содержащих оба эти элемента в виде оксидов или соединений, переводимых в оксиды. [c.154]

    Необычны магнитные свойства и у некоторых соединений гадолиния. Его сульфат п хлорид (гадолиний, кстати, всегда трехвалеитен), размагничиваясь, заметно охлаждаются. Это свойство использовали для получения сверхнизкой температуры. Сначала соль С(12(304)з-8Н20 помещают в магнитное поле и охлаждают до предельно возможной температуры. А затем дают ей размагнититься. При этом запас энергии, которой обладала соль, еще уменьшается, и в конце опыта температура кристаллов отличается от абсолютного нуля всего на одну тысячную градуса. [c.146]


Смотреть страницы где упоминается термин Гадолиний соединения: [c.35]    [c.62]    [c.144]    [c.152]    [c.133]    [c.276]    [c.168]    [c.50]    [c.73]    [c.91]    [c.325]    [c.507]    [c.198]    [c.231]    [c.218]    [c.59]    [c.75]    [c.215]    [c.36]    [c.18]    [c.33]    [c.36]    [c.147]   
Химический энциклопедический словарь (1983) -- [ c.501 , c.502 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.501 , c.502 ]




ПОИСК





Смотрите так же термины и статьи:

Гадолиний

Гадолиний перекисные соединения

Гадолинит

Металлы, редкоземельные также гадолиний, диспрозий, неодим, празеодим полупроводниковые соединения



© 2025 chem21.info Реклама на сайте