Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная структура

    ЭЛЕКТРОННАЯ СТРУКТУРА АТОМОВ. [c.40]

    Электронная структура атомов [c.21]

    В соответствии с особенностями электронных структур семейства 4/-(лантаноиды) и 5/-(актиноиды) элементов помещают в III группу. [c.30]

    В соответствии с закономерным развитием электронных структур атомов характер химической связи (а следовательно, структуры и свойств) однотипных соединений в периодах и группах периодической системы изменяется закономерно. На примере бинарных соединений элементов второго периода [c.246]


    Химическое превращение -- это качественный скачок, при котором исчезают одни вещества и образуются другие. Происходящая при этом перестройка электронных структур атомов, ионов и молекул сопровождается выделением или поглощением теплоты, света, электричества и т. п. — превращением химической энергии в другой вид энергии. [c.158]

    Когда Менделеев составлял периодическую таблицу, он исходил из валентности элементов, поскольку о распределении в них электронов в то время ему еще ничего не было известно. Теперь вполне разумно было предположить, что валентность элемента определяется его электронной структурой. [c.158]

    Можно было сделать вывод, что электронные оболочки инертных газов наиболее устойчивы, а другие атомы могут отдавать или принимать электроны, пока их электронная структура не станет такой же, как у ближайшего инертного газа. [c.159]

    ПЕРИОДИЧЕСКАЯ СИСТЕМА Д. И. МЕНДЕЛЕЕВА КАК ЕСТЕСТВЕННАЯ КЛАССИФИКАЦИЯ ЭЛЕМЕНТОВ ПО ЭЛЕКТРОННЫМ СТРУКТУРАМ АТОМОВ [c.21]

    Изложенное показывает, что по мере роста заряда ядра происходит закономерная периодическая повторяемость сходных электронных структур, а следовательно, и повторяемость свойств элементов. [c.28]

    Сопоставление электронных структур атомов и ионов скандия, галлия и алюминия показывает, что по строению внешних электрон- [c.524]

    Наличие заряда не меняет основной электронной структуры. Например, ион боргидрида (V), метан (VI) и ион аммония (VII) — все являются [c.393]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    В отличие от ковалентных соединений координационное число в чисто ионных соединениях не зависит от специфики электронной структуры элементов, а определяется соотношением размеров ионов. Так. при соотношении ионных радиусов в пределах 0,41 — 0,73 [c.87]

    Особенность электронной структуры атомов элементов подгруппы меди обусловливает относительно большую устойчивость двухатомных молекул uj, А 2, Auj (энергия диссоциации соответст- [c.620]


    Показано [184], что активность биметаллического Pt—Re-катализатора в реакции гидрогенолиза циклопентана не является аддитивной функцией его состава. Максимальной активностью обладает катализатор, содержащий 70—80% Re в металлической фазе. Предполагают, что на поверхности катализатора существуют атомы Pt и Re, действующие как изолированные атомы или как атомы, слабо связанные между собой. Наряду с этим существуют атомы Pt и Re с электронной структурой, модифицированной присутствием второго металла. Число таких активированных атомов возрастает при увеличении содержания Re в металлической фазе катализатора. [c.139]

    ЭЛЕКТРОННАЯ СТРУКТУРА АРОМАТИЧЕСКОГО ЯДРА [c.392]

    Прежде чем рассматривать современное объяснение механизмов реакций, включая и замещение в ароматических соединениях, необходимо кратко остановиться на современных представлениях об электронной структуре ароматического ядра. [c.392]

    В соответствии с особенностями электронных структур у элементов (/)-семейства энергии ионизации близки. На участке кривой 5с—2п хорошо видны две площадки, соответствующие заполнению первой и второй половин 3 /-подслоя. Заполнение З -орбиталей по одному электрону заканчивается у Мп 3(1Чз ), что отмечается некоторым повышением относительной устойчивости 452-конфигурации, проникшей под экран З -конфигурации. Наибольшее значение энергии ионизации имеет Zп(3 i 4s ), что находится в соответствии с полным завершением З -подслоя и стабилизацией электронной пары, проникшей под экран 3 -кoнфигypaции. Значения третьих энергий ионизации (см. табл. 5) также показывают, что наиболее устойчивы конфигурации у Мп и у 2п. [c.34]

    Элементы подгруппы калия — калий К, рубидий Rb, цезий s и франций Fr — наиболее типичные металлические элементы — катио-ногены. При этом с повышением порядкового номера этот признак у элементов усиливается. Для них наиболее характерны соединения с преимущественно ионным типом связи. Вследствие незначительного поляризующего действия ионов (малый заряд, устойчивость электронной структуры, большие размеры), комплексообразование с неорганическими лигандами для К , Rb , s , Fr" нехарактерно, даже кристаллогидраты для них почти не известны. [c.490]

    При решении вопросов, связанных с электронной структурой атомов, следует исходить из того, что любое устойчивое состояние электрона в атоме характеризуется определенным значениями квантовых чисел я, I, т и. 5. Состояние электрона в атоме, отвечающее определенным значениям квантовых чисел п, I н т, называется атомной электронной орбиталью. [c.40]

    Электронная структура атома описывается формулой Какой это элемент  [c.45]

    Немецкий химик Рихард Абегг (1869—1910) в 1904 г. указал, что электронная структура инертных газов должна быть особенно устойчивой. Атомы инертных газов не проявляют тенденции к уменьшению или увеличению числа электронов на внешних электронных оболочках и поэтому не участвуют в химических реакциях. [c.158]

    Приведенные рассуждения объясняют, почему валентность натрия должна быть равна 1. Натрий не может отдать больше одного электрона без нарушения устойчивой электронной структуры 2, 8. Атом хлора по той же причине не может принять больше 0Д1ЮГ0 электрона. В то же время кальций (электронная структура [c.159]

    Многие исследователи пытались усовершенствовать теорию электровыделения металлов, привлекая представления об электронном строении их ионов. Одна из та <пх попыток принадлежит Лайонсу (1954). По Лайонсу, величина металлического перенапряжения зависит от характера электронных структур разряжающихся ионов и выделившегося на катоде металла. При этом перенапряжение будет особенно большим в двух случаях. Во-иервых, если аквакомплексы (илн иные комплексы) образованы нонами за счет электронов, находящихся на внутреннн>. орбитах (внутрнорбитальпые комплексы), благодаря чему создаются наиболее прочные связи ионов в растворе. Во-вторых, если велика разница в электронных структурах иона и металла в этом случае требуется значительная энергия активации для их перестройки в процессе разряда. Разря- [c.466]

    Все свойства элементов, определяемые электронной оболочкой атома, закономерно изменяются по периодам и группам периодической системы. При этом, поскольку в ряду элементов-аналогов электронные структуры с X о д н ы, но н е т o fk ji е с т в е н н ы, при переходе от одного элемента к другому в группах и подгруппах на-блюдаегся не простое повторение свойств, а их более или менее отчетливо выраженное закономерное изменение. [c.31]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить с позиций электростатического взаимодействия ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ИОНИЗЯИ.ИИ -Ц- тттрлпцнпчрмрлкныо металлы. Об- [c.86]

    Различают реакции с изменением и без изменения степеней окисления элементов. Понятно, что такое подразделение условно и основано на формальном признаке — возможности количественного определения условной величины — степени (состояния) окисления элемента. Неизменность степени окисления элементов при химических превращениях вовсе не означает, что не происходит перестройки электронных структур взаимодействующих атомов, ионов и молекул. Конечно, и в этом случае протекание реакции обязательно связано с большим или м(. ньшим изменением характера межатомных, межиошых и меж-молекулярных связей, а следовательно, и эффективных зарядов атомог . [c.207]


    Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно больший размер атома (молекулы), аргон более склонен к образованию межмолекулярпых связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—189,3"С) и кипения (—185,9°С). Он лучше адсорбируется. [c.496]

    НЫХ лоев невозбужденных атомов элементы подгруппы скандия не имеюг ничего общего с алюминием, тогда как электронная структура трехзарядных ионов этих элементов одинакова  [c.525]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    В работе [166] исследована активность промотиро-ванных катализаторов Pt/AljOa в реакциях С5- и Сб-де-гидроциклизации изобутилбензола и обсуждена связь между электронным состоянием и каталитическим действием этих катализаторов. В качестве исходного применяли промышленный катализатор Pt/AbOs, содержащий 0,35% Pt, и промотировали его добавками Pd, Ir, Со, Re или Аи (до суммарного содержания металлов 0,6%). Для сравнения был приготовлен катализатор, содержащий 0,6% Pt, добавлением 0,25% Pt к исходному промышленному катализатору. Исходя из электронной структуры полученных катализаторов, авторы раз- [c.249]

    В работе [180] обсуждены вопросы, связанные с дисперсностью, фазовым и поверхностным составом и электронной структурой биметаллических катализаторов. Отмечено, что наличие очень малых кристаллитов металла приводит к характеристическому изменению температуры плавления, формы частиц, параметров рещетки и ряду других свойств по сравнению с макрокристаллами. Поверхностный состав сплава часто значительно отличается от объемного, причем поверхность обогащается тем металлом, который имеет меньщую энтальпию сублимации или большее сродство к газовой фазе. [c.254]

    Все эти структуры достаточно хорошо объясняют свойства симметрии бензола, но они не могут объяснить без дополнительных предположений необычную стабильность ароматического кольца. Развитие квантовомеханической теории валентности позволило объяснить электронную структуру бензола, удовлетворительно обосновавшую симметричные свойства бензольных ядер и значительную стабильндсть ароматической системы. [c.393]

    При одном и том же заряде и одинаковом радиусе ионов поляризуемость ионов с 18-электрониой оболочкой (например, Си+, Сс1 +) выше, чем ионов с благородногазовой электронной структурой (N3+, Сг + и т. п.). [c.68]

    Ранее уже отмечалось, что наличие заряда само по себе не изменяет ни геометрической, ни электронной структуры молекулы. Поэтому законно предположить, что структура карбоний-ионов IX должна быть Весьма похожей на структуру соответствующих производных бора (VIII). Другими словами, считается, что карбоний-ионы должны иметь плоскостные структуры, в которых три гибридные зр орбиты использованы для образования с-связой с тремя атомами или группами, соединенными с центральным атомом. Кроме того, должна остаться свободная орбита р, расположенная выше и ниже атома углерода в перпендикулярном направлении в плоскости, в которой лежит молекула. [c.394]

    Для дальнейшего рассмотрения механизма реакций замещения важно ясно представлять себе фактическое различие между электронной структурой этих двух классов комплексов. Как указывалось ранее, бензольное кольцо в настоящее время изображается в виде плоского кольца с относительно высокой копцентрацией электронов по обеим сторонам плоскости. Электрофильные атомы или группы, по-видимому, будут притягиваться к электронному облаку в местах наибольшей плотности. Так как постулируется, что плотность электронов в центре кольца мала, а значительной она является непосредственно выше и ниже плоскости кольца углеродных атомов (рис. 1), то электрофильные атомы или группы должны были бы ассоциироваться с электронами, находящимися но соседству с этой областью, и, по-видимому, должны обладать возможностью легко передви- гаться вокруг кольца высокой плотности электронов, не внося большого изменения в их распределение  [c.401]

    В главах этой книги, посвященных растворам и адсорГции, показано, что растворимость газов в жидкостях и адсорбция газов на поверхности твердых тел определяются, помимо температуры и концентрации газа, химической природой газа и химической природой растворяющей жидкости или адсорбента. Различия в геометрической и электронной структуре молекул газа приводят к разной растворимости (или разной адсорбируемости) этих газов. Последнее обстоятельство обусловливает то, что при равновесии средние продолжительности жизни разных молекул в газовой фазе и в смежном с нею растворе (или на поверхности твердого тела) ири заданной температуре и заданных концентрациях этих молекул в газовой фазе неодинаковы. [c.543]

    В главе XVIII показано, что теплота адсорбции зависит от геометрической и электронной структуры молекулы адсорбата и адсорбента. Следовательно, изменяя природу адсорбента (или неподвижной жидкости в газо-жидкостной хроматографии), мояс-но изменить времена удерживания и даже последовательность выхода компонентов. Для -алканов теплота адсорбции является линейной функцией числа атомов углерода (п) в молекуле (см. стр. 492, 493), поэтому при одной и той же температуре колонки [c.564]


Смотреть страницы где упоминается термин Электронная структура: [c.159]    [c.159]    [c.58]    [c.467]    [c.467]    [c.160]    [c.394]    [c.395]    [c.531]   
Смотреть главы в:

Твёрдые смазочные материалы и антифрикционные покрытия -> Электронная структура

Химия актинидных элементов -> Электронная структура

Химия протеолиза Изд.2 -> Электронная структура


Симметрия глазами химика (1989) -- [ c.246 , c.320 ]

Перекись водорода (1958) -- [ c.266 ]

Химия нитро- и нитрозогрупп Том 1 (1972) -- [ c.0 ]

Химия Справочник (2000) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте