Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лантаниды валентности

    Положение лантанидов в периодической системе. Структура электронной оболочки атомов лантанидов. Особое положение гадолиния и лютеция. Валентность лантанидов. Восстановительная активность. Отношение к кислороду, воде и кислотам. Окислы и гидроокиси лантанидов. Окраска и парамагнитные свойства ионов. Лантанидное сжатие. Наиболее важные соли. Разделение ионов лантанидов. Комплексные соединения. [c.333]


    В главе VI уже указывалось, что актиниды рассматриваются как аналоги лантанидов. Строение атома актинидов характеризуется достройкой слоя 5/ (у лантанидов достраивается слой 4/). Современные работы по изучению спектров поглощения этих элементов подтверждают эту аналогию. Однако более низкие значения энергии связи 5 f-электронов по сравнению с энергией связи 4 f-электронов обусловливают и определенные различия в свойствах лантанидов и актинидов, проявляющиеся, в частности, в появлении высших (выше 4) валентных состояний и в большей их устойчивости. Для урана, плутония, нептуния и америция характерна высшая валентность 6, тогда как следующие за америцием кюрий и берклий не проявляют валентности выше 4 для калифорния известна только валентность 3, так же как н для актиния [624]. [c.349]

    Валентность лантанидов в основном равна трем, однако некоторые элементы ввиду особенностей своего строения обладают валентностью не только 3, но и 4 или 2. Наличие переменной валентности подчиняется также известной периодичности, причем гадолиний, валентность которого всегда равна трем, и лютеций, также всегда трехвалентный, замыкают оба полупериода, каж дый из которых состоит из 7 элементов. [c.234]

    В своих соединениях актиниды проявляют гораздо большее разнообразие валентных состояний, чем лантаниды. Известные для них валентности приведены ниже  [c.370]

    В общем, однако, можно утверждать (за исключением лантанидов и трансурановых элементов), что сходство в химическом отношении, если даже не учитывать валентность, все-таки преобладает в вертикальном направлении. Впрочем, от этого правила более или менее сильно отклоняются элементы первого периода действительно, большинство из них оказывается наиболее близкими не к своим аналогам той же группы и, также хотя и не в столь сильной степени, к своим непосредственным соседям по горизонтали, но каждый из них обнаруживает особенное сходство по отношению к элементу, стоящему от него справа и ниже в следующем ряду так, литий близок к магнию, бериллий — к алюминию, бор — к кремнию, кислород — к хлору. Сходство в химическом отношении между бериллием и алюминием настолько глубокое, что долгое время сомневались в двухвалентности бериллия и в его аналогии с магнием и щелочноземельными металлами. [c.40]

    Оба распределения аналогов четко отображаются приводимой ниже модификацией периодической системы (стр. 236). Сплошными линиями на ней соединены полные аналоги, крупным пунктир.рм — элементы, аналогичные при всех валентностях, кроме характеристичной, а мелким пунктиром — элементы, являющиеся аналогами именно при характеристичной валентности (и только при ней). Значком Ьа показаны лантан и лантаниды, значком [c.235]

    Оксиды и гидроксиды. Максимальная валентность элемента. по кислороду отвечает, как правило, номеру той группы периодической системы, в которой он расположен. Исключения сравнительно немногочисленны сюда относятся инертные газы (кроме Хе), Си, Ag, Ли, Н, Р, некоторые лантаниды и актиниды. [c.484]


    Одно из главных преимуществ ИХ — быстрое одновременное определение многокомпонентных смесей катионов или анионов (до 10 и более) в течение 2-15 мин. Основные анионы (фторид, хлорид, нитрат, сульфат, фосфат) можно разделить на хороших ионообменниках за 2-5 мин., за 15-20 мин. можно разделить все катионы группы лантанидов. ИХ способна разделить и определить катионы в разных валентных состояниях, например, Ге " чего не может сделать атомно-адсорбционная спектрометрия. [c.327]

    Метод применим для определения фтора во фторидах актинидов и лантанидов всех валентностей. Для силикатов, карбонатов, фосфатов, боратов и проб, содержащих А1, Мо и W, метод непригоден, [c.113]

    Соли элементов подгруппы скандия и лантанидов обычно образованы трехзарядными ионами, лишь Се дает ряд солей с валентностью 4+, которые сильно гидролизованы в растворе [c.301]

    Однако наличие у остальных лантанидов частично заполненного слоя 4/ придает им некоторые дополнительные особенности, и поэтому более целесообразно рассматривать их как отдельную группу вместе с актинидами. Главной среди этих дополнительных характеристик является наличие аномальных валентностей у элементов, стоящих в начале, середине и конце ряда. Уже было указано на четырехвалентность церия по-видимому, в этом случае определяющим фактором является стабильность конфигурации инертного газа без 4/-электронов. Ион гадолиния 0(1 имеет как раз семь 4/-электронов — по одному на каждой 4/-орбите. И если вспомнить замечание, сделанное на стр. 55 относительно особой устойчивости наполовину заполненной оболочки, то нет ничего удивительного в том, что гадолиний всегда трехвалентен. Еще более существен тот факт, что предшествующий элемент — европий—может быть как трехвалентным, так [c.63]

    Это верно лишь в применении к элементам от водорода до кальция включительно. В так называемых переходных элементах (от скандия до меди и в аналогичных им элементах следуюш,их больших периодов периодической системы), а также в лантанидах (редкоземельных элемент 1х) и в актинидах имеются незаполненные внутренние оболочки электронов. Одпако все электроны этих незаполненных оболочек нельзя относить к валентным.— Прим. ред. [c.97]

    В одном ряду элементов, располон енных по возрастанию зарядов ядер, находятся 15 элементов, непосредственно следующих один за другим. Для них характерно необычно близкое сходство химических свойств. Особенность этого участка заключается еще и в том, что здесь не обнаруживается характерного изменения валентности нри переходе от одного элемента к другому — явление, которое будет подробно обсуждено в дальнейшем. Речь идет о 15 элементах с зарядами ядер от 2 = 57 до Z = И. Разместить эти элементы в таблице периодической системы обычной формы без натяжки не удается. Раньше иногда помещали их всех в одну клетку таблицы на место, соответствующее лантану (Z = 57). Гораздо правильнее, однако, поступают теперь, выделяя из периодической системы 14 следующих за лантаном элементов и помещая их внизу в качестве особого семейства семейство лантанидов). Аналогичное особое семейство образуют следующие за ураном элементы — трансураны. [c.22]

    Пятый период системы элементов начинается с рубидия. При этом снова при незаполненных 4й- и 4/-обо-лочках начинает заполняться 5з-уровень, Оболочка Ай начинает заполняться после стронция в атоме иттрия, подобно тому как З -оболочка начинала заполняться в скандии. Завершается заполнение 4й-состояний в палладии Рс1 (1) (2) (3) (45)2(4р) (4й) , и пятый период заканчивается ксеноном Хе (1) (2) (3) (45)2(4р) (4й ) ° 55)2 (5р) . Валентный электрон цезия, оставляя пустыми оболочки 41 и 5 , занимает состояние 6з и, таким образом, начинает шестой период. После бария Ва(1)(2)(3) (48)2(4р) (4й ) °(55)2(5р) (2 )2 начинает заполняться оболочка М в атоме следующего элемента лантана Ьа(1)(2)(3)(45)2(4р)б(4 ) (58)2(5р)б(5 )Мб5)2. Таким образом, лантан трехвалентен. В следующих за ним не продолжается заполнение 5с/-оболочки, а начинает заполняться забытая оболочка 4/. На этой оболочке всего может разместиться 14 электронов [2 (2-3-1-1)]. В результате ее заполнение завершается на лютеции Ьи(1)(2)(3)(4)(58)2(5р)б(5 ) (б5)2. Эти 14 элементов весьма близки по своим свойствам к лантану. Их называют лантанидами, или редкоземельными. [c.318]

    Отличительная черта химии актинидов — переменность их валентности. Кроме того, способность малых по размерам, трудно поляризуемых анионов (например, фторид-иона) заставлять какой-либо данный элемент-партнер проявлять высшую валентность приводит в ряду фторидов актинидов (табл. 1) к группе соединений с очень разнообразными свойствами. Переменность валентности (особенно по сравнению с лантанидами) отражает более низкие энергии связи и большее простирание электронной оболочки 5 в отличие от оболочки 4/. В свою очередь это обусловливает более легкую достижимость высших валентных состояний и стабилизацию последних при образовании комплексов. В табл. 1 даны электронные конфигурации газообразных атомов металлов, а также (в тех случаях, когда это известно) атомов металлов во фторидах. [c.131]

    Полярографические исследования РЗЭ (см. ниже) показывают, что почти все они имеют потенциал полуволны около -—1,8 (и. к. э.) [—1,55 в (н. Б. э.)], т. е. потенциал, близкий к потенциалу выделения щелочных металлов на ртути. Поэтому если, в растворе присутствует ион щелочного металла, то при электролизе образуется амальгама щелочного металла, на которой и разряжается ион лантанида, поскольку потенциал катода принимает при этом соответствующее значение. Это особенно наглядно прослеживается на примере лантана — элемента, не обладающего переменной валентностью. По нашим данным, потенциал ртутного катода достигает —2,2 в (н. к. э.) в растворе цитрата лития и —2,0 в в растворе цитрата калия. При введении лантана в эти же растворы потенциал катода практически не меняется. В растворах же ацетата лантана, не содержащего цитрата калия или лития, потенциал катода устанавливается равным —1,4 б, т. е. отвечает потенциалу выделения водорода на ртутном катоде при данном pH (4,5). Таким образом, можно считать, что потенциал ртутного катода диктуется щелочным металлом и что выделение лантана является сопряженным процессом. [c.293]


    Особыми химическими свойствами обладают элементы промежуточных групп — железа, палладия и платины, а также лантаниды и актиниды. В атомах элементов этих групп происходит достройка глубоких й- и /-состояний. Электроны, находящиеся в этих состояниях, могут участвовать в образовании химических связей наряду с электронами внешней оболочки. В настоящее время синтезированы соединения, у которых число связей значительно больше, чем их должно быть согласно правилу валентности. Природа этих соединений излучается методами квантовой механики. [c.188]

    Энергии уровней 5/ и Ы настолько близки, что могут перекрываться, и поэтому наличие 5/-электронов может зависеть даже от валентности элемента и фазового состояния его соединения. Одинаковая структура электронной оболочки объясняет аналогию спектров поглощения актинидов и лантанидов положение и характер полос поглощения, сплощное поглощение в ультрафиолетовой области и т. д. [c.491]

    За время, прошедшее после подготовки первого издания настоящего справочника, в литературе появились сообщения о новых диаграммах состояния систем элемент — кислород (А1—О, Ат—О, Ст—О, Ей—О, К—О, ЕЬ—О, 5с—О, Та—О, ТЬ—О), а также об уточненных или вновь построенных диаграммах систем, для которых диаграммы уже были известны (например, Си—О, Сг—О, N5—0, Т1—О, и—О, V—О, XV—О, 2г—О). В связи с этим содержание главы X существенно изменилось введены новые диаграммы, пересмотрены диаграммы, входившие в первое издание, некоторые заменены более полными и уточненными, некоторые опущены, как не представляющие большого интереса. Диаграммы систем Рг—О, ТЬ—О предложены их авторами как предположительные, систем 5п—О, Ш—О — как схематические, а диаграмма Ст—О является условной, некоторые линии которой (перитектоидные превращения фаз I и 6) проведены по аналогии с соответствующими линиями в системах Ме—О для лантанидов. За последнее время в ряде систем Ме—О открыты субоксиды — окислы, состав которых не отвечает валентным соотношениям атомов, но они имеют упорядоченную структуру. В тех случаях, когда существование субоксидов подтверждено с большой определенностью, они внесены в диаграммы состояния. Такие диаграммы, уточненные в области твердых растворов, приведены для систем Т1—О (рис. 83), V—О (рис. 88), 2г—О [c.10]

    Отличив актинидов от лантанидов, однако, заключается в том, что в их атомах идет достройка электронного слоя, более. удаленного от ядра,, чем в атомах лантанидов. Участвующие в этой достройке электроны (сверх 18) слабее удерживаются ядром и могут выступать в качестве валентных электронов. Поэтому. актиниды обнаруживают, в отличие ог лантанидов, нарастающую с порядковым номером положительную валентность, что позволяет легко аналитически отделять их Друг от друга. Но при одинаковой валентности. актинидов их аналогичные соединения обладают и очень сходными химическими свойствами. Важнейшие-из актинидов — торий уран. [c.478]

    ГО, а ПЯТОГО слоя. У элементов 93—103 распределение электронов подобно распределению вышестоящих в таблице лантанидов 61 — 71. Шесть валентных электронов урана распределяются по слоям так 5 6(1 75 . Для пяти валентных электронов протактиния (91) и четырех валентных электронов тория (90) возможны по две комбинации распределения электронов для Ра — 5/ 6ii 7s или 5/ 6 75 и для ТЬ — 5/ 6ii 7s или 6сР7з . Актинидов известно 14 (90—103). [c.139]

    Последний щелочный элемент (франций) начинает седьмой период. Этот элемент не представлен в природе и был искусственно синтезирован. Валентный электрон этого элемента находится в 75-состоянии. Седьмой элемент заполняется подобно шестому. Внешние оболочки бария и актиния подобны таковым бария (радия) и лантана (актиния). Соответственно лантанидам существует четырнадцать актинидов, завершаемых 103 элементом — лауренсием. Электронные оболочки синтезированного в СССР 104 элемента подобны оболочке гафния, а оболочка 106 элемента, также синтезированного в СССР, подобна оболочке вольфрама. В последнее время в СССР был синтезирован 107 элемент. Седьмой период должен завершиться на 118 элементе, который должен быть аналогом радона. [c.319]

    Оба распределения аналогов четко отображаются приводимой модн( )икацией периодической системы (с. 184). Сплошными линиями па ней соединены полные аналоги, простым пунктиром — элементы, аналогичные ири всех валентностях, кроме характеристичной, а точеч1 Ым пунктиром — элементы, являющиеся аналогами именно при характеристичной валентности (и только при ней). Значком J показаны лантаи и лантаниды, значком Ас — акти-ппп и актиниды. [c.185]

    Энергетические подуроьни 5/ и Ы не только близки друг другу, по и существенно выше, чем аналогичные подуровни в предыдущем периоде. Этим и обусловлен значительно более высокин подъем валентности первых актинндон по сравнению с лантанидами (Се ). В дальнейшем. характерная валентность вновь понижается вследствие стабилизации подуровня 5/ по мере накопления в нем электронов (н соответствующего увеличения положительного заряда ядра). [c.373]

    В I — IV группах периодической системы практически наблюдаемая максимальная валентность элементов в их галогенидах совпадает с характеристичной почти всегда. Исключения имеют место лишь для Си, Ag и Аи (а также для некоторых лантанидов и актинидов). Напротив, в V — VIII группах теоретически возможная валентность часто не достигается даже у фторидов. [c.478]

    Плутоний принадлежит к элементам VH периода таблицы Менделеева и следует в нем за ураном и нептунием. В отношении места этих элементов в периодической системе в настоящее время наиболее распространена теория Сиборга [3, гл. 17 170, 203, гл. 11 646, 648]. По этой теории у элементов, начиная формально с тория и кончая лауренсием, происходит последовательное заполнение четырнадцатью электронами внутреннего энергетического уров1НЯ 5/. Так как количество внешних валентных электронов (один электрон 6d и два —7s) при этом не меняется и остается рав ным количеству валентных электронов актиния, химические и физические свойства членов ряда должны быть сходны, а сам ряд получил название актинидов. Подобная закономерность четко выражена у лантанидов, имеющих электронную структуру сверх структуры ксенона if ndQs и главную валентность 3. [c.13]

    Элементы трансактиниевого ряда обладают несравненно более разнообразными химическими свойствами, чем лантаниды. Важнейшей характеристикой элемента, определяющей совместно с атомным номером его положение в периодической системе, является валентность. В табл. 3 представлены валентные состояния элементов от актиния до менделеевия. Характерная [c.13]

    Начиная с америция, электронные конфигурации элементов,, по-видимому, подобны конфигурациям лантанидов и вполне отвечают актинидной теории. Из электронных структур и валентных состояний тяжелых элементов вытекают свойства 5/-элект-ронов, отличающиеся от свойств 4/-электронов лантанидов. Энергия связи 5/-электронов мала и сравнима с энергией связи б электронов. Это приводит к тому, что первые элементы ряда — ТЬ, Ра и и могут отдавать все валентные электроны в том числе и 5/-электроны, с образованием устойчивых к восстановлению многозарядных ионов. У следующих за ними элементов энергия связи 5/-электронов все еще остается в пределах энергии химической связи, благодаря чему нептуний, плутоний и америций могут проявлять высокую валентность 6. Даже для кюрия, имеющего сравнительно устойчивую семиэлектронную конфигурацию в 5/-слое, известны четырехвалентные соединения-СтОг и Стр4, образующиеся за счет отщепления одного 5/-электрона. [c.15]

    Несмотря на то, что актинидная теория позволила предсказать химические свойства транскюриевых элементов, она совершенно недостаточно объясняет поведение первых, к тому же наиболее изученных элементов ряда. Дело прежде всего заключается в том, что главная валентность первых пяти элементов, следуюш,их за актинием, выше трех. Валентные состояния ТЬ, Ра, и, Np, Ри и Ат уже не являются малыми отклонениями от главной валентности 3, как это имеет место у лантанидов, а образуют самостоятельную закономерную последовательность. Электронные структуры, химия этих элементов, а также требование непрерывности размещения элементов в периодической системе по атомным номерам подсказывают иной подход к определению обсуждаемого ряда. [c.16]

    Такое поведение не характерно для лантанидов, у которых валентность 2 для 5т, Ей и УЬ является нормальной, но соответствует свойствам актинидо-уранидов. В полуторных сульфидах торий является гомологом циркония, а уран—гомологом молибдена. [c.18]

    Используя общую ЗС (ОЗС) кластера, была установлена 25] корреляция зависимости изменения ОЗС и растворимости п в а-сиалоне от ионного радиуса Л(Ьп), рис. 5.5. Анализ отдельных межатомных связей показал, что введение в меж-дуузлие сопровождается двумя противоположными эффектами 1) ростом ЗС 81—N и 2) возникновением антисвязывающих состояний примеси с ближним окружением. Первый эффект относят за счет донорного действия примеси, когда внешние электроны лантанида, внедряющегося в матрицу в виде трехзарядного катиона, распределяются между связями 81—М, усиливая последние. Возникновение антисвязывающих состояний Ьп —81, N объясняют [25] репульсивным характером взаимодействия остовных (55,5р)- и (б5,6р)-оболочек примесного катиона с валентными электронами 81 и N. Примечательно, что величина антисвязывающих состояний в направлении связи Ьп—81 (длина связи -2,88 А) заметно меньше, чем для более коротких связей Ьп—N (-2,56 А), рис. 5.5. [c.99]

    Гадолиний и лютеций, ионы Ме + которых обладают такими оболочками (а также лантан. у которого /-оболочка еще вовсе незаполнена), наиболее устойчивы в трехвалентном состоянии. Проявление у ближайших к ним элементов, кроме валентности 3+, валентности 4+ у Се, Рг, ТЬ. (Ву), а у Зт. Ей, (Ти), УЬ—2+ можно рассматривать как стремление сохранить эти устойчивые /-оболочки или приблизиться к ним. В соответствии с условиями устойчивости /-оболочек лантаниды принято делить на две подгруппы легкие, или цериевые (Се—Ей), и тяжелые, или иттриевые (Ос]—Ьи), хотя различия между ними невелики. [c.301]

    Совершенно исключительное сходство между соседними по горизонтали элементами наблюдается в сежйстве лантанидов, т. е. в ряду 14 следующих за лантаном элементов с порядковыми числами от 5 8 до 71 включительно. Здесь оно настолько велико, что распространяется даже на валентность. Аналогичное явление имеет место в семействе трансурановых элементов. Причины появления такого сходства рядом стоящих элементов, расположенных в этих областях периодической системы, кроются в строении атомов этих элементов. Этот вопрос будет рассмотрен в начале гл. 2. [c.40]

    Рассматривая соединения, в которых элементы обнаруживает характерную для их места в периодической сйстеме валентность, в общем как гетерополярные, Коссель рассчитал для первых 57 элементов, до подгруппы лантанидов, количества электронов, которыми они обладают в тех соединениях, где они проявляют высшую отрицательную и высшую положительную валентности. На оси абсцисс рис. 28 элементы расположены в соответствии с их порядковыми числами и через равные промежутки рассчитанное Косселем для каждого элемента число электронов нанесено в качестве ординаты и отмечено черной точкой. Те элементы, которые лиогут быть заряжены и отрицательно и положительно, имеют по две черные точки, которые конечно расположены на одной вертикали одна над другой на расстоянии 8 единиц в соответствии с тем фактом, что сумма положительных и отрицательных высших валентностей равна 8, на что указывал еще Аббег. Кружки на рисунке соответствуют числу электронов для элементов в состоянии нейтральных атомов. В то время как эти числа естественно возрастают от элемента к элементу на одинаковую величину и соответственно этому лежат на прямой, расположенной под углом 45° к оси абсцисс, черные точки для элементов, расположенных рядом с инертными газами, все лен ат на прямых, параллельных осп абсцисс, и находятся от нее на том же расстоянии, как и точка, обозначающая число электронов инертного газа, вокруг которого группируются элементы. Это значит, что число электронов, которыми обладают атомы элементов, стоящих рядом с инертными газами (т. е. элементов главных подгрупп периодической системы) в своих типичных соединениях, равно числу электронов ближайшего инертного газа. И отсюда следует .если два элемента, например натрий и фПгор, образуют химическое соединение, то один из них отдает другому такое количество электронов, что у каждого из них после этого остается столько электронов, сколько их имеет ближайший инертный газ. [c.151]

    Лантаниды, обладающие переменной валентностью, образуют, кроме обычных окислов типа МбгОз, также низшие или высшие окислы. [c.247]

    Особого внимания заслуживают потенциалы систем, образованных лантанидам и, обладающими переменной валентностью с одной стороны оистем7Ие +/МеЗ+ (церий, празеодим и, возможно, тербий) и, с другой, систем Ме +1Ме + (самарий, европий, иттербий). [c.290]

    Виккери в своей книге [675] приводит схематическую диаграмму (рис. 43) — связь между чистотой РЗЭ и числом операций, необходимых для достижения этой чистоты. Кривая А представляет идеальный случай, когда за 1—2 отделения удается полностью очистить данный лантанид от других. Этот случай может быть достигнут только при применении метода окисления или восстановления, так как изменение валентности лантанида приводит к изменению его свойств, вследствие чего отделение его от других значительно упрощается. Кривая В показывает, что при разделении методами кристаллизации или осаждения заметное возрастание чистоты наступает лишь после х one- [c.314]

    Однако приведенная выше закономерность является достаточно условной. Во-первых, не все эломептм указанных групп образуют химические соединения с водородом во-вторых, част1> элементов II и III группы, как например, бериллю , алюминий и другие образуют сложные полимерные гидриды с аномальной валентностью. С рядом металлов III—VII групп (как например, с титаном, лантанидами, актиноидами, а также с металлами VIII группы) водород образует соединения, неопределенного состава и структуры. Гидриды бора, относящегося к III группе. [c.14]

    В описанном методе отделение трехвалентных трансурановых элементов основано на том, что шестивалентный плутоний (а также нептуний и уран, в случае их присутствия) не образует нерастворимых фторидов. Однако полное отделение требует проведения многих циклов окисления и осаждения. Более легко можно отделить плутоний, нептуний и уран ионообменным методом [13]. Когда последние находятся в валентных состояниях > -Ь 4, они образуют прочные анионные комплексы в солянокислом растворе концентрации от 6 до 10 г-мол1л и могут быть сорбированы анионообменной смолой в этих условиях трехвалентные актиниды и лантаниды не сорбируются. Четырехвалентное состояние плутония обеспечивается добавлением нитрита аммония до концентрации 0,1 г-ж л/л. [c.402]

    Под названием актиниды объединяются элементы с порядковыми номерами 89—103 включительно. До открытия трансурановых элементов торий Z = 90), протактиний (2 = 91) и уран 2 = 92) включались в IV, V и VI группы периодической системы соответственно и считались аналогами вышестоящих гафния, тантала и вольфрама. Однако отмечалось, что эта аналогия не является полной ввиду отклонений свойств элементов и их соединений от закономерностей, наблюдаемых в гомологическом ряду. Когда были открыты трансурановые элементы — нептуний и плутоний,—оказалось, что они по химическим свойствам отличаются от предполагаемых аналогов и напоминают более уран, чем рений и осмий. Исследование нептуния и плутония, а также открытых затем трансплутониевых элементов показало, что эти элементы в одинаковом валентном состоянии очень сходны друг с другом и все вместе напоминают группу лантани-дов, особенно в трехвалентном состоянии. Поэтому они и объединены [I] в семейство актинидов. По аналогии с лантанидами предполагалось, что семейство актинидов объединяет 14 элементов половина из них в о время не была еще открыта. [c.489]

    Америций — элемент с порядковым номером 95 является актинидным гомологом европия. В виде гидратированного трехвалентного иона америций обладает свойствами, типичными для трехвалентных актинидов или лантанидов. Однако америций существует и в других валентных состояниях этой особенностью иногда пользуются для эффективного разделения. Америций обладает следующими валентными состояниями (0), (П1), (IV), (V) и (VI), однако в водных растворах существуют только Ат (III), Ат(У) и Ат (VI). Довольно неясный вопрос об Ат(IV) будет обсуждаться позднее. В водных растворах кислот указанным валентным состояниям соответствуют ионы следующего вида Ат , Ат02+ и АтОа . Такая запись ионов не позволяет учесть гндратационную воду или возможные комплексные формы. Более детальное обсуждение индивидуальных особенностей каждого валентного состояния приводится. ниже, [c.11]


Смотреть страницы где упоминается термин Лантаниды валентности: [c.178]    [c.115]    [c.60]    [c.8]    [c.65]    [c.180]    [c.152]    [c.50]    [c.50]   
Учебник общей химии (1981) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Лантаниды

Лантаниды, атомные и катионные радиусы электронное строение и валентность



© 2025 chem21.info Реклама на сайте