Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система элементов периоды

    Каковы общие закономерности изменения физических и химических свойств простых веществ, образуемых элементами главных подгрупп периодической системы элементов а) в периоде б) в группе  [c.218]

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Вот как выглядела эта история. Иногда говорят, что Ньюлендсу задавали вопросы об аккордах и арпеджио , но на самом деле его спрашивали только об алфавитном порядке. Однако недоверие было совершенно очевидным, а незадачливая музыкальная аналогия сделала идеи Ньюлендса больше похожими на магию, чем на науку. Отсутствие места для новых элементов и помещение по два элемента в некоторые места таблицы были серьезными недостатками. По-видимому, главным достоинством схемы, предложенной Менделеевым, было введение больших периодов после двух первых, содержащих по восемь элементов. Менделеев подкреплял свою таблицу очень большим числом химических доказательств, а также прославившими его предсказаниями новых элементов и их химических свойств. Он несомненно заслужил репутацию создателя периодической системы элементов. [c.327]

    Разделив все элементы иа периоды и располагая одн,н период под другим так, чтобы сходные ио свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев составил таблицу, названную им периодической системой элементов по группам и рядам. Эта таблица в современном виде, дополненная открытыми уже после Менделеева элементами, приведена в начале книги. Она состоит из десяти горизонтальных рядов и восьми вертикальных столбцов, или групп, [c.49]


    Что называется группой периодической системы элементов Что называется периодом Сколько элементов содержится в каждом из первых шести периодов  [c.324]

    Если принять во внимание из.ложенные выше соображения, не будет казаться парадоксальным, что нуклеофильная сила бромид- и феноксид-ионов, в которых атомы с неподеленными парами электронов находятся в разных группах и периодах Периодической системы элементов, практически равна, в то время как бромид-ион в 10 раз менее сильное основание, чем фено-ксид-ион. [c.105]

    Последний в периодической системе седьмой период начинается аналогично шестому периоду. Сначала у франция, Рг, и радия, Яа, происходит заполнение 7. -орбиталей, затем следуют внутренние переходные металлы от актиния, Ас, до нобелия, N0 (нерегулярное заполнение их /- и ( -орбита-лей показано на рис. 9-3), и, наконец, с лоуренсия, Ьг, начинается четвертый ряд переходных металлов. У актиноидов наблюдается больше отклонений от идеализированной схемы заселения сначала /- и затем ( -орбиталей, чем у лантаноидов (см. рис. 9-3), и поэтому первые несколько актиноидных элементов обнаруживают большее разнообразие химических свойств, чем соответствующие лантаноиды. [c.399]

    В связи с возможностью достижения новой области устойчивости представляет интерес дальнейшее расширение таблицы периодической системы элементов. На рис. 23-7 показан расширенный вариант периодической таблицы, включающий весь частично заполненный в настоящее время седьмой период и новый восьмой период. В последнем впервые встречаются д-орбитали, 5д. Последовательность заполнения орбиталей 5д, б/ и Id точно предсказать заранее невозможно. Однако проведенные в исследовательском центре Лос-Аламоса расчеты указывают, что после первых одного-двух новых электронов следующие электроны должны последовательно заполнять 5д-орбитали. Соответствующие элементы могут быть названы сверхпереходными металлами. [c.423]

    В качестве приложения в конце книги приведена периодическая система элементов Д.И.Менделеева в виде таблиц двух форм - с короткими периодами и с длинными периодами. [c.10]

    Структура периодической системы элементов. В соответствии с периодическим изменением свойств элементов система Д. И. Менделеева состоит из семи периодов. Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные — большими. Вследствие различия периодов по длине и дру-1ИМ признакам может быть много способов их относительного [c.36]

    Распространение метода ЛКАО на гомоядерные двухатомные молекулы второго периода периодической системы элементов Д. И. Менделеева дает атомные орбитали (АО) 2а, 2р , 2ру и 2рг- Условимся [c.9]

    Дальше наступил период совершенствования Периодической системы, в котором участвовали ученые многих стран. Характерно, что сотни вариантов системы, предложенные учеными позже, не носили самостоятельного характера, а были направлены на усовершенствование или модернизацию Периодической системы элементов Менделеева. Слова таблица и периодическая стали в них заклинаниями. Они как бы накладывали табу на другие способы наглядного представления естественного множества химических элементов как системы природы. Правда, у некоторых ученых возникал вопрос а почему только таблица Но это воспринималось как ересь, и отступников ставили на место. А вот в логической корректности словосочетания периодическая таблица никто не усомнился. Потрясение ученых, вызванное открытием Д. И. Менделеева, было настолько сильным, что им было не до логико-семантических тонкостей. Хотя в теоретической науке и это важно. Допустимо говорить периодическая сис- [c.60]

    Периодическая система элементов имеет семь периодов (десять горизонтальных рядов), из которых первый, второй и третий со- [c.9]

    Так, согласно А. Ф. Капустинскому, в земных условиях атомы имеют обычные электронные структуры на глубине до 60—120 кле, что соответствует давлению 2-10 — 6-10 атм. На глубине примерно 3 тыс. км (что соответствует давлению в миллионы атмосфер) атомы приобретают уже иные структуры. Электронные уровни атомов последовательно заполняются до предельной емкости. Например, электронная структура элемента 6-го периода церия должна быть Периодическая система элементов, существующих в условиях столь высоких давлений, должна состоять лишь иэ пяти периодов (содержащих соответственно 2, 8, 18, 32 и 50 элементов). Необычная электронная структура атомов обусловливает особое состояние вещества, специфику его физических и химических свойств. По выражению А. Ф. Капустинского, это зона вырожденного химизма . [c.157]

    Общепринятой формой выражения периодического закона является периодическая система элементов. Химические элементы в системе расположены в порядке последовательного увеличения зарядов ядер их атомов (этим, как известно, и определяется атомный номер элемента) и тем самым в порядке возрастания числа электронов. Элементы в системе расположены рядами. Первые три ряда являются одновременно и первыми тремя периодами системы (они называются малыми периодами). Последующие периоды, начиная с четвертого, состоят из двух рядов и называются большими. Всего в системе семь периодов (последний еще не завершен) и десять рядов. Элементы, сходные по своим важнейшим характеристикам, образуют вертикальные столбцы, называемые группами всего в современной периодической системе элементов восемь групп (включая нулевую). [c.23]


    Поскольку легкость отдачи электронов нейтральными атомами возрастает у элементов одного периода справа налево, а у элементов одной группы — сверху вниз, наиболее типичные металлы группируются в левой и нижней частях периодической системы элементов Д. И. Менделеева. К металлам относятся все элементы [c.109]

    Структура периодической системы элементов. Периодом называется ряд элементов, начинающийся щелочным металлом и заканчивающийся инертным газом. Номер периода совпадает со значением главного квантового числа внешнего электронного уровня. Каждый период, кроме первого, начинается типичным металлом. При переходе от элемента к элементу в периоде слева направо происходит постепенное ослабление металлических и нарастание неметаллических свойств. Типичными неметаллами Я1ВЛЯЮТСЯ галогены. Каждый период завершается инертным газом, который отделяет типичные неметаллы от типичных металлов. [c.35]

    Периодическая система элементов. Риды элементоп, в пределах которых свойства изменяются последовательно, как, например, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Ес.чи напии1ем эти два периода одни иод другим так, чтобы под литием находился нат])ий, а иод неоном — аргои, го получим следующее расположение элементов  [c.49]

    Теория электронных конфигураций (Рассел, Улиг) связывает большую легкость возникновения пассивного состояния с неукомплектованностью электронами внутренних оболочек переходных металлов, занимающих средние участки больших периодов периодической системы элементов — Сг, Ni, Со, Ре, Мо, W, имеющих незаполненные d-уровни в металлическом состоянии. [c.309]

    Распространение метода ЛКАО на гомоядер ные двухатомные молекулы второго периода периодической системы элементов Д. И. Менделеева дает атомные орбитали (АО) 2 , 2рх, 2ру и 2р . Условимся за ось X принимать ось, совпадающую с осью молекулы. У обоих атомов А — Л она. направлена навстречу. Атомная орбиталь 25-электрона имеет сферическую симметрию, перекрывание 2 - и 2рх-АО симметрично относительно оси молекулы. Такие МО называются а-молекуляр-ными орбиталями. Перекрывание 2ру- и 2р -кО дает я-МО. я-Моле-кулярные орбитали несимметричны относительно оси молекулы. При повороте я-МО вокруг оси молекулы на 180° знак МО меняется на противоположный. Различают связывающую а-МО и разрыхляющую сг -МО, связывающую я-МО и разрыхляющую я -МО. Порядок связи [c.11]

    В первый период развития гидрогенизационных процессов в качестве катализаторов применялись специальным образом приготовленные металлы VIII группы периодической системы элементов никель, кобальт, железо, платина, палладий или их окислы [1—7]. Катализаторы этого типа характеризуются весьма высокой гидрирующей способностью и могут использоваться на носителях и без них. В литературе подробно освещены способы приготовления и применения никеля Ренея [8,9], платиновой и палладиевой черни, окиси платины [10], никеля на кизельгуре или на окиси алюминия [II], платины и палладия на активированном угле [12, 13]. [c.64]

    Как пишет академик, до 1949 г. существовали различные непроверенные предположения и догадки, ставшие легендами. Для удовлетворения здорового любопытства коснемся и этого аспекта темы. Как отмечает Б. М. Кедров [3, с. 29] К числу легенд, получивших поддержку у ряда химиков, относилась следующая считалось, что свое открытие Менде-теев сделал, расположив сразу в единый ряд все элементы по величине атомных весов и обнаружив при этом периодическое повторение свойств элементов. А после этого, будто бы разрезал составленный им единый ряд на отдельные периоды и поместил их один над другим. В итоге получилась известная нам Периодическая система элементов . [c.42]

    Чем больше нуклеофильная реакционная способность, тем выше при прочих равных условиях скорость реакции, протекающей по механизму N2. У разных элементов эта способность различна и зависит от положения их в Периодической системе элементов Д. И. Менделеева. Чем правее в пределах одного периода находится элемент, тем больп е заряд его ядра и тем менее реакционноспособны его неподеленные пары электронов, находящиеся на внешней оболочке. [c.100]

    В приведенных примерах оба атома с неподеленными парами электронов (в примере А —атомы углерода и азота, а в примере Б — атомы азота и кислорода) в Периодической системе элементов находятся рядом, и поэтому различие их нуклеофильных свойств не так велико. Однако существуют нуклеофильные реагенты, н которых атомы с неподеленными пара.ми электронов ирннад.1ежат к (. дному и тому же периоду, и< нм холятся не м [c.102]

    В табл. 1 приведены названия (русские и латинские) элементов, химические знаки, порядковые номера их в периодической системе элементов Д. И. Менделеева, относительная атомная масса и год открытия. Атомные массы приведены по Международной таблице 1981 г. Звездочкой обозначены искусственно полученные элементы древн. — элемент, известный в глубокой древности средн. — элемент открыт в средние века. В квадратных скобках приведены массовые числа изотопов, обладающих наибольшим для данного радиоактивного элемента периодом полураспада. Названия и химические знаки элементов, приведенные в круглых скобках, не являются общепринятыми. [c.6]

    Электроотрицательность — это количественная характеристика способности атома в молекуле притягивать к себе электроны. Она равна полусумме энергии ионизации и сродства атома к электрону. Зависимость электроотрицательности от порядкового номера элемента носит периодический характер электроотрицательность возрастает внутри периода и уменьшается внутри группы периодической системы элементов. На практике пользуются относительными значениями электроотрицательности (ОЭО), принимая за единицу электроотрйцательность лития (табл. 10). [c.22]

    Пользуясь значениями относительных электрботрицатель-ностей элементов (см. табл. 6 в приложении), определите, как меняется характер связи в оксидах элементов третьего периода периодической системы элементов. [c.27]

    Седьмой, пока незавершенный период системы элементов, построен аналогично шестому. После двух з-элементов (франций и радий) и одного -элемента (актиний) здесь расположено 14 /-элементов, свойства которых проявляют известную близость к свойствам актиния. Эти элементы, начиная с тория (2 = 90) и кончая элементом 103 — лоуренсием, обычно объединяют под общим названием актиноидов. Непосредственно за актиноидами расположены -элементы от дубния (2 = 104) до мейтнерия (2 = 109), которые и завершают известную пока часть периодической системы элементов. [c.69]

    АЗОТ (Nitrogenium, греч, azoos — нежизненный) — элемент V группы 2-го периода периодической системы элементов Д. И. Менделеева, п. н. 7, ат. м. 14,0067. А. открыт и получен Д. Резерфордом в 1772 г. При обычных условиях А.— бесцветный газ, без вкуса и запаха. Малорастворим в воде, лучше растворяется в некоторых углеводородах (гексан, гептан). Т. пл.—209,86° С, т. кип. [c.9]

    АКТИНИЙ (греч. aktinos — луч) Ас — радиоактивный элемент И1 группы 7-го периода периодической системы элементов Д. И. Менделеева. П. н. 89, массовое число наиболее долгоживущего изотона 227 (период полураспада 22 года). А. открыт в 1899 г, А. Дебьерном в отходах переработки урановых руд, где находят следы А. Искусственно А. получают при облучении радия нейтронами. А.— металл серебристо-белого цвета, химически очень активен, в соединениях трехвалентен, реагирует с кислородом воздуха, легко растворяется в НС1 и HNO3. По химическим свойствам близок к лантану. А.— опасный радиоактивный яд с высокой а-актнв-ностью. [c.14]

    АРГОН (греч. argos — недеятельный) Аг — химический элемент VIII группы основной подгруппы 3-го периода периодической системы элементов Д. II. Менделеева п. и. 18, ат. м. 39,948. Вхо.дит в число инертных газов. Содержание в атмосфере 0,93 об.%. Открыт в 1894 г. Д. Рэлеем и У. Рамзаем. Бесцветный газ, без вкуса и запаха. Существует три изотопа А. Аг, зздг ц мдг. В природных условиях "Аг образуется при радиоактивном распаде Это ис- [c.30]

    АСТАТ (греч. аз1аЬ5 — нестойкий) А1 — радиоактивный химический элемент УН группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 85, массовое число наиболее долгоживущего изотопа 210. Впервые [c.33]

    КОР (Borum, от араб, названия буры baurag) В — химический элемент 1П группы 2-го периода периодической системы элементов Д. И. Менделеева, п. р. [c.45]

    ГАЛЛИЙ (Gallium, от древнего названия Франции) Ga — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 31, ат. м. 69,72. Имеет два изотопа Ga и iGa. Существование Г. (экаалюминия) предвидел Д. И. Менделеев еще в 1870 г. Впервые выделил Г. в 1875 г. французский химик П. Е. Ле-кок де Буабодран. Г.— серебристо-белый металл, т. пл. 29,8°С, т. кип. 2230 С. В химическом отношении очень напоминает алюминий. В соединениях Г. трехвалентен. При обыкновенной температуре не окисляется, водород из воды не вытесняет. Галогены (кроме иода) взаимодейсгвуют с Г. при обыкновенных условиях. При нагревании растворяется в большинстве минеральных кислот. Оксид Г. GaaOa белого цвета. Гидроксид [c.64]


Библиография для Периодическая система элементов периоды: [c.103]    [c.199]   
Смотреть страницы где упоминается термин Периодическая система элементов периоды: [c.203]    [c.404]    [c.18]    [c.38]    [c.42]    [c.47]    [c.52]    [c.54]    [c.59]    [c.62]   
Курс неорганической химии (1963) -- [ c.21 , c.23 ]

Аккумулятор знаний по химии (1977) -- [ c.41 ]

Аккумулятор знаний по химии (1985) -- [ c.41 ]

Курс неорганической химии (1972) -- [ c.21 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Периодическая система

Периодическая система элементо

Периодическая система элементов

Элемент периодическая



© 2025 chem21.info Реклама на сайте