Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрамикроскоп поточный

    Определите диаметр частиц аэрозоля, используя результат исследования методом поточной ультрамикроскопии в объеме 2,2-10-2 мм подсчитано 87 частиц аэрозоля (дыма мартеновских печей). Концентрация аэрозоля 1-10 кг/м , плотность дисперсной фазы 2 г/см , форма частиц сферическая. [c.127]

    В настоящее время имеются приборы, довольно сложные по конструкции, выполняющие автоматически практически все операции. Одним из таких приборов, предложенным отечественными учеными Б. В. Дерягиным и Г. Я- Власенко, является поточный ультрамикроскоп. Золь протекает через специальную кювету в направлении оси микроскопа ири боковом освещении. Проходя [c.259]


    По сравнению с классической ультрамикроскопией поточный метод имеет значительные преимущества устранены ошибки, вызываемые вторичным рассеиванием резко расширился диапазон определяемых концентраций (от 0,1 до 10 частиц в 1 см ) не нужно периодически останавливать поток аэрозоля, благодаря чему исключены ошибки, связанные с оседанием, коагуляцией и испарением частиц в кювете [39, 159]. [c.230]

    Ниже описывается устройство щелевого ультрамикроскопа, поточного ультрамикроскопа и микроскопа с конденсором темного поля. [c.83]

    Исходный золь кварца в воде был агрегативно устойчивым, изоэлектрическая точка частиц 5102, оцененная методом микроэлектрофореза, находилась при pH = 2 [24]. Методом поточной ультрамикроскопии было показано, что золь 5102 в обла- [c.174]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]

Рис. II, 7. Схема поточного ультрамикроскопа Рис. II, 7. <a href="/info/95963">Схема поточного</a> ультрамикроскопа
    Поточный ультрамикроскоп, применяющийся для определения размеров твердых частиц в широком диапазоне (0,05—10 мкм), не нашел применения нри исследовании эмульсий. Преимущество метода в том, что можно проводить измерения в широкой области концентраций частиц (1 — 10 частиц на 1 см ) без большого увеличения, так как не требуется одновременная дифференциация нескольких частиц в отличие от обычного микроскопа. [c.153]


    Б. В. Дерягин и Г. Я. Власенко сконструировали специальный поточный ультрамикроскоп, с помощью которого весьма быстро можно определить число частиц в единице объема аэрозоля или лиозоля. Схематическое устройство поточного микроскопа показано на рис. И, 7. Изучаемый лиозоль или аэрозоль наблюдается в потоке, направленном вдоль канала кюветы 2, параллельного оси тубуса микроскопа 5. Каждая частица, пересекая зону, освещенную источником света 3, дает вспышку общее число таких вспышек может быть легко подсчитано наблюдателем. Разделив число подсчитанных вспышек на измеряемый счетчиком 1 общий объем аэрозоля, протекающего через контролируемую и вырезанную окулярной диафрагмой 6 часть поля, легко найти численную концентрацию, [c.47]

    Рассмотренный метод определения среднего размера коллоидных частиц был усовершенствован Дерягиным и Власенко [4], [5], [6], которые разработали метод поточной ультрамикроскопии и сконструировали на его принципе приборы — поточные ультрамикроскопы. [c.37]

    При исследовании аэрозолей методом поточной ультрамикроскопии в объеме = 1,33-10- лг , протекшем через счетное поле микроскопа, подсчитано 50 частиц масляного тумана. Определить средний радиус частиц, приняв их форму за сферическую. Весовая концентра- [c.41]

    В настоящее время поточный ультрамикроскоп получил в Советском Союзе широкое распространение в ряде исследовательских учреждений, а также в шахтах, в полевых и экспедиционных условиях. [c.48]

    Современный метод изучения процесса коагуляции основан н счете частиц в потоке. Поточный ультрамикроскоп, разработанный впервые Б. В. Дерягиным и Г. Я. Власенко, описан в гл. И. Этим прибором можно определять численную концентрацию, не прерывая процесса коагуляции, во много раз быстрее, чем по старому способу. Одновременно новый способ устраняет многие источник  [c.262]

    Размер и форму частиц аэрозолей определяют с помощью обычной микроскопии, ультрамикроскопии и электронной микроскопии. Длй счета частиц в аэрозолях особенно удобен поточный микроскоп Б.-В. Дерягина и Г. Я. Власенко, о котором уже упоминалось в гл. II. [c.342]

    Для изучения аэрозолей Б. В. Дерягин и Г. Я. Власенко предложили поточный ультрамикроскоп. Воздух, содержащий аэрозольные частицы, проходит через камеру с постоянной объемной скоростью. Так как рассеяние света частицей зависит от ее размеров, то с помощью оптического клина можно подбирать такую освещенность, при которой частицы до определенного размера не будут наблюдаться. Таким путем можно оценивать распределение частиц по размерам. [c.163]

    В поточном ультрамикроскопе, недавно сконструированном Дерягиным и Власенко, аэрозоль или гидрозоль протекает через специальную кювету в направлении оси микроскопа при боковом освещении. Подсчет числа отблесков, видимых на темном фоне, дает, после деления на объемную скорость потока, концентрацию частиц V, а следовательно и и г. В этом приборе можно регулировать яркость освещения посредством фотометрических клиньев. С уменьшением яркости глаз или фотоумножитель перестает регистрировать более мелкие частицы. Это позволяет построить кривую распределения частиц по размерам путем подсчета числа частиц при различных степенях яркости. [c.42]

    В поточном ультрамикроскопе, сконструированном Дерягиным и Власенко, аэрозоль или гидрозоль протекает через специальную кювету в направлении оси микроскопа при боковом освещении. Подсчет числа отблесков, видимых на темном фоне, дает после деления на объемную скорость потока, концентрацию частиц v и, следовательно, и и г. [c.42]

    В поточном ультрамикроскопе аэрозоль или гидрозоль протекает через специальную кювету в направлении оси микроскопа при боковом освещении. Соотношение числа отблесков, видимых на темном фоне, и объемной скорости потока определяет число частиц в единице объема, а следовательно, V и г. В этом приборе можно регулировать яркость освещения, что позволяет построить кривую определения частиц по размерам путем подсчета числа частиц при различных степенях яркости. [c.314]

    С помощью метода поточной ультрамикроскопии в прошедшем объеме = 2-10 " м подсчитано 100 частиц золя серы. Концентрация золя с = 6,5-10 5 кг м , плотность у = ЫО кг м . Рассчитать средний радиус частиц, приняв их форму за сферическую. [c.42]

    Методом поточной ультрамикроскопии в объеме и =3-10-" подсчитано 60 частиц аэрозоля водяного тумана. Каков средний радиус частиц, если концентрация аэрозоля с =15-10- кг/м Форму частиц принять за сферическую. [c.42]

    При исследовании гидрозоля золота методом поточной ультрамикроскопии в объеме Ш = 1,6-10 подсчитано 70 частиц. Определить средний радиус частиц золя, приняв их форму за сферическую. Весовая концентрация золя с =7-10- /сг/лг , плотность у = 19,3х ХЮ кг м . [c.42]


    Методом поточной ультрамикроскопии в объеме W = 1,5-10- уи подсчитано 53 частицы аэрозоля масляного тумана. Считая форму частиц сферической, определить их средний радиус. Концентрация золя с = 21 х X 10- кг/м , плотность у 0,92-10 кг м . [c.42]

    В настоящее время для определения концентрации частиц дисперсной фазы вместо обычного ультрамикроскопа часто используют поточный ультрамикроскоп, разработанный Дерягиным и Власенко. В поточном ультрамикроскопе фиксируется ЧИСЛО частиц, проходящих за единицу времени в поле зрения микроскопа при течении дисперсной системы, что позволяет быстро определять среднюю концентрацию частиц в золе. Применение оптико-электронных систем [c.171]

    Для исследования кинетики коагуляции Б. В. Дерягиным и Н. М. Кудрявцевой был применен поточный ультрамикроскоп (по схеме, близкой к поточному ультрамикроскопу для аэрозолей Б. В. Дерягина и Г. Я. Власенко). С помощью поточного ультрамикроскопа можно определять за 2—3 мин численную концентрацию гидрозолей вплоть до 10 —10 частиц в 1 см другие способы счета частиц не позволяют измерять концентрацию больше 10<—10 частиц в 1 см . При применении достаточно концентрированных золей с помощью поточного микроскопа можно наблюдать не только быструю, но и медленную коагуляцию, отвечающую малым значениям коэффициента е, не затрачивая для этого чрезмерно много времени. [c.267]

    Ультрамикроскопы поточные фотоэлектрические 159 Умягчениг аоды. Методы 21—23 [c.223]

    Для быстрого определения степени запыленности воздуха на местах замера разработаны методы, не требующие выделения дисперсной фазы из аэрозолей. На этих методах основано действие следующих приборов поточного ультрамикроскопа ВДК-4, фотопылемеров (Ф-1, Ф-2, ФЭП-6), электронных кони-метров (ЭКТМ, ЭК-4), электронного пылемера ЭПП, переносного электрорадиационного пылемера ПРП-3 и др. [c.134]

    При достижении определенной концентрации двойных частиц их распады уравновешивает процесс слипания одиночных частиц, вследствие чего численная концентрация золя становится постоянной. В некоторый момент к одной из двойных частиц прилипает третья частица, образуя тройнук> частицу. Энергия связи каждой из трех частиц образовавшегося агрегата в два раза больше, чем у частицы, входящей в двойную частицу. Поэтому такая тройная частица имеет мало шансов распасться. Одновременно происходит дальнейший рост агрегатов за счет присоединения новых частиц. И действительно, визуальные наблюдения под микроскопом показали, что в некоторый момент среди сравнительно слабо видимых частиц (по вспышкам в поле зрения поточного ультрамикроскопа) появляются все более яркие и коагуляция все более ускоряется. Этим объясняется форма кривых с перегибом. При более высоких концентрациях электролита вследствие снижения энергетического барьера и углубления потенциальной ямы горизонтальные участки графика укорачиваются и, наконец, исчезают, но 5-образная форма кривых сохраняется. Таким образом, при изучении коагуляции необходимо учитывать не только процессы агрегации, но и распада агрегатов. [c.268]

    Взаимодействие света с веществом зависит от соотношения длины волны света и размеров частиц, на которые падает световой поток. Это взаимодействие происходит по законам геометрической оптики (отражение, преломление), если размеры объекта больше длины волны света. Если размеры частиц меньше половины длины волны света, то происходит рассеивание света в результате его дифракции. Область видимого света характеризуется длиной волн от 760 до 400 нм. Поэтому в молекулярных и коллоидных системах видимый свет рассеивается, а в проходящем свете эти растворы прозрачны. Наибо.льшей интенсивности рассеивание света достигает в коллоидных системах, для которых светорассеяние является характерной качественной особенностью. Обнаружение в растворе пути луча источника света при рассматривании раствора перпендикулярно к направлению этого луча позволяет отличить коллоидный раствор от истинного. На этом же принципе основано устройство ультрамикроскопа, в котором наблюдения проводят, в отличие от обычного микроскопа, перпендикулярно направлению проходящего через объект света. Схема поточного ультрамикроскопа Б. В. Дерягина и Г. Я. Власенко приведена на Рис. 10.6. Схема поточного ультрами-рис. 10.6. с помощью этого прибора кроскопа В. В. Дерягина и Г. Я. Вла-определяют концентрацию дисперс- сенко 1 — кювета 2 — источник света ных частиц в аэрозолях и коллоид- 3 — линза 4 — тубус микроскопа, ных растворах. [c.297]

    Исследование коагуляции можно проводить прямыми и косвенными методами. К первым относится ультрамикроскопиче-ский метод счета частиц золя (поточный ультрамикроскоп), К косвенным методам относятся все методы, основанные на из-, мерении вторичных эффектов (мутность золя, изменение окраски, вязкости и др,). [c.236]

    Теория Смолуховского неоднократно подвергалась экспериментальной проверке путем подсчета числа частиц в единице объема ультрамикроскопически (например, посредством поточного ультрамикроскопа с построением кривых V — I, либо методом светорассеяния с использованием формулы Рэлея (IV. 1). [c.239]

    Применение теории ДЛФО к процессам гетерокоагуляции показывает, что в некоторых случаях изменяет знак не только Urep, но и Ua- Природа лондоновских сил в этих случаях, конечно, не изменяется, — они всегда являются силами притяжения, — однако при суммировании взаимодействий между двумя частицами и сре-Дой результирующие значения А и, следовательно, Ua могут изменить знак, что приводит к отталкиванию частиц (Ua>0). Таким образом, в системах, для которых Urep < О и Ua> О увеличение с, устраняющее электростатическое притяжение, должно способствовать стабилизации системы. Это парадоксальное явление , изученное Бунгенберг де-Ионгом (1937 г.) и теоретически обосно-банное Дерягиным, было подтверждено экспериментально методом поточной ультрамикроскопии в работах Чернобережского (ЛГУ) для системы Аи—Ре(ОН)з, устойчивой в широком диапазоне средних значений и разрушавшейся при малых концентрациях электролита. [c.247]

    С помощью метода поточной ультрамикроскопии в объеме И =2-10- ж подсчитано80 частиц аэрозоля—дыма мартеновских печей. Концентрация аэрозоля с = 10 X X 10-5 к2/л1 , плотность 7= 2-10 кг/л1 . Определить среднюю длину ребра частицы I, считая ее форму кубической. [c.42]

    Для определения концентрации частиц дисперсной фазы вместо обычного ультрамикроскопа часг(5 используют разработанный Б. В. Дерягишлм и Г. Я. Власенко поточный ультрамикроскоп, в котором фиксируется число частиц, проходящих за единицу времени в поле зрения микроскопа при течении дисперсной системы, что позволяет быстро определять среднюю концентрацию частиц в золе. Применение оптико-электронных систем регистрации интенсивностей светового пот(зка от отдельных частиц позволяет получать и кривые распределения частнц по размерам. [c.207]


Смотреть страницы где упоминается термин Ультрамикроскоп поточный: [c.317]    [c.177]    [c.152]    [c.37]    [c.39]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.81 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Ультрамикроскоп

Ультрамикроскопия



© 2024 chem21.info Реклама на сайте