Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция медленная

    По экспериментальным данным время половинной коагуляции гидрозоля составляет 340 с при исходной частичной концентрации частиц 2,52-10 част./м , вязкости дисперсионной среды 1-10 Па-с и температуре 293 К. Сделайте вывод, быстрой или медленной является коагуляция. Как изменится скорость коагуляции, если вязкость среды увеличить в 3 раза  [c.182]

    Рассмотрим кинетику медленной коагуляции мелких частиц. Интерпретация медленной коагуляции, данная Смолуховским, покоится на формальных положениях, лишь значительно позднее была сделана попытка связать медленность процесса коагуляции (агрегации) с взаимодействием между частицами. Теория медленной коагуляции Смолуховского выводится из теории, рассмотренной в предыдущем разделе. Он допускает, что различие между быстрой и медленной коагуляцией (агрегацией) состоит в том, что в первом случае каждое столкновение приводит к слиянию, тогда как во втором случае эффективной является только лишь часть столкновений й. Тогда константа коагуляции (агрегации) в этом случае имеет вид [82] [c.92]


    На рис. 139 показана принципиальная схема переработки компрессорного конденсата. Из колодца 1 конденсат подается в систему отстойных баков 2, где происходит самая грубая его очистка — снимается поверхностная пленка масла. При этом содержание масла в конденсате снижается до 120—150 мг/л. После отстойников конденсат поступает во флотатор 3. Флотация основана на искусственном насыщении очищаемой воды пузырьками воздуха, которые прилипают к частицам масла или других загрязнений, способствуя перемещению их из объема воды на ее поверхность. Флотационная очистка идет во много раз быстрее, чем при отстаивании, и более эффективна. При напорной флотации воздух растворяется в воде под давлением, размер пузырьков не превышает 100—200 мкм. Пузырьки всплывают медленно, не нарушая спокойного состояния жидкости. Эффективность флотационной очистки увеличивается, если она сочетается с предварительной коагуляцией. В качестве [c.332]

    Скорость коагуляции. Медленная и быстрая коагуляция. Ход коагуляции в зависимости от концентрации коагулирующего электролита можно подразделить на две стадии (рис. 27.4) медленную и быструю. При медленной коагуляции изменение концентрации коагулирующего электролита сопровождается резким изменением скорости коагуляции. В области быстрой коагуляции увеличение концентрации коагулирующего электролита не вызывает изменения скорости коагуляции, достигшей своего максимального значения. Концентрацию электролита, начиная с которой скорость коагуляции остается постоянной, называют порогом быстрой коагуляции. [c.431]

    Что называют быстрой и медленной коагуляцией Какова взаимосвязь между скоростью коагуляции и видом потенциальной кривой взаимодействия частиц  [c.179]

    В отличие от коагуляции, когда в латекс вводится сразу большое количество электролита, и быстро образуется коагулюм, при желатинировании процесс идет медленно с образованием рыхлой структуры. [c.609]

    Нет коагуляции Нет коагуляции Медленная коагуляция Выпадение золота Медленная коагуляция Очень слабая коагуляция Нет коагуляции [c.400]

    С увеличением молекулярного веса углеводородной смеси и, следовательно, сопутствующих органических неуглеводородных соединений возможность образования твердой фазы возрастает. Смолы большего молекулярного веса при своем уплотнении реакционноспособнее, чем смолы с меньшим молекулярным весом. Вследствие большей вязкости среды твердые частички дольше удерживаются во взвешенном состоянии в мелкодисперсной системе, а крупные агрегаты после коагуляции медленнее оседают. Поэтому в дизельном топливе под микроскопом можно увидеть несравненно больше частиц, чем в реактивных топливах, а в маслах—больше, чем в дизельных топливах но больше всего их в мазутах, в которых осадкообразование велико в связи с сосредоточением почти всех соединений с зольными элементами, присутствовавшими в исходном сырье. В профильтрованном дизельном топливе за 12 недель при температуре 45 °С максимальный размер твердых частиц возрастал с 2,8 до 10,4 мк с одновременным ростом их абсолютного количества. [c.189]


    Другое серьезное затруднение, которое встало перед Смолуховским при применении уравнения кинетики реакций второго порядка к процессу коагуляции, заключалось в том, что скорость коагуляции зависит не только от концентрации самого золя, но и от концентрации электролита-коагулятора. Как мы уже знаем, зависимость эта связана с падением величины С-потенциала и выражается характерными кривыми, схематический вид которых дан на рис. 29 и 30 (стр. 122 и 123). Необходимость учитывать меняющееся влияние концентрации на скорость коагуляции заставила Смолуховского ввести два понятия коагуляции—.медленную коагуляцию и быструю коагуляцию (не смешивать со скрытой и явной коагуляцией) и соответственно разработать кинетику обоих [c.143]

    Для получения так называемой созревшей вискозы раствор ксантогената очищают от различных механических примесей на рамных фильтр-прессах и выдерживают определенное время (24— 60 ч, процесс созревания вискозы) при установленной постоянной температуре (14—17°С). Во время созревания происходит изменение химических и коллоидных свойств вискозы, раствор становится менее вязким, уменьшается стабильность и увеличивается способность к коагуляции. В результате частичного омыления ксантогената понижается степень этерификации целлюлозы. Пузырьки воздуха, попавшие в растор, медленно выделяются из него происходит обезвоздушивание. Обычно вискоза содержит целлюлозы 6— 9%, едкого натра 6—7,5%, серы 2,2— 2,3% и воды 80—83%. После фильтрации и обезвоздушивания подготовленный прозрачный желтоватый раствор ксантогената подается сжатым воздухом или при помощи зубчатого насоса в прядильный цех на процесс формования (прядения) волокна. Зубчатый насос, забирая определенное количество вискозы, продавливает ее через фильтр. Затем вискоза при 45— [c.210]

    В соответствии с этим можно выделить три зоны устойчивости, медленной коагуляции (агрегации) с порогом с и быстрой агрегации с порогом с . Поскольку с ростом с снижается высота энергетического барьера ы1 (уменьшается энергия отталкивания), наблюдаемая закономерность объясняется следующим образом [27] при с=с появляется некоторая вероятность прохождения через барьер наиболее быстрых частиц (для которых ыП> 1), далее вероятность, эта увеличивается и при с>се достигает предельной величины —единицы. Таким образом, область быстрой коагуляции (агрегации) определяется как область, в которой все соударения эффективны. Вычисление скорости агрегации (коагуляции) сводится к подсчету числа столкновений. Наоборот, когда не все столкновения эффективны, коагуляция называется медленной и ее скорость определяется как числом соударений, так и их эффективностью. [c.87]

    Легко видеть, что отношение констант коагуляции (агрегации) для медленной и быстрой коагуляции равно [c.94]

    В настоящее время ведутся работы в области медленной коагуляции с учетом наложения на систему турбулентных пульсаций. [c.95]

    Рассмотрим кинетику медленной коагуляции крупных частиц. Пусть существуют силы отталкивания и достаточно значительные, но коагуляция (агрегация) все же происходит. Тогда время между столкновениями определяется не скоростью осаждения под действием силы тяжести, а скоростью перемещения частиц под действием обобщенной силы взаимодействия. Силы, действующие на частицы ц и г— х, равны [c.97]

    Для медленной коагуляции АЕ фО, Р ф I (необходимо учитывать эффективность соударений). Исходя из уравнений (VI.12), (VI.19) и (VI.20), константу скорости медленной коагуляции можно выразить так  [c.283]

    Н. А. Фуксом, используется представление о коэффициенте замедления который показывает, во сколько раз константа скорости медленной коагуляции меньше константы скорости быстрой коагуляции. Учитывая соотношение (VI. 22), получим  [c.283]

    Рассмотренные выше количественные закономерности коагуляции электролитами относятся в основном к порогу быстрой коагуляции, когда потенциальный барьер равен нулю или фактор устойчивости Х (коэффициент стабильности) равен единице. В соответствии с теорией медленной коагуляции, разработанной [c.337]

    Теория медленной коагуляции предсказывает линейную зависимость (в логарифмических координатах) фактора устойчивости [c.337]

    Константа скорости коагуляции К (константа скорости медленной коагуляции) является мерой кинетической агрегативной устойчивости. Если А = 0 и Р = 1, то эта константа равна константе скорости быстрой коагуляции, зависящей от вязкости среды и температуры системы. Если ДЯ =7 = О и Р =7 1, то не все соударения частиц эффективны, и происходит медленная коагуляция. Замедление коагуляции, обусловленное потенциальным барьером, характеризуется фактором устойчивости, или коэффициентом стабильности  [c.160]

    Согласно теории кинетики коагуляции различают быструю и медленную коагуляцию. Для такого разделения можно воспользоваться уравненпем (VI.12) константы скорости коагуляции. При быстрой коагуляции все столкновения частиц эффективны, т. е. приводят к слипанию частиц. Такому положению отвечает условие равенства нулю потенциального барьера Д = О и равенства единице стерического множителя Р= 1. Константа скорости быстрой коагуляции в соответствии с уравнением (VI. 12) равна [c.282]

    Цель работы, изучение кинетики коагуляции латексов электролитами с одно- и двухвалентными катионами определение порога быстрой и медленной коагуляции расчет фактора стабильности и энергетического барьера отталкивания расчет константы скорости быстрой коагуляции и сравнение ее значения с теоретической величиной. [c.167]


    В этом уравнении К — константа медленной коагуляции. [c.167]

    Какие параметры дисперсной системы влияют на скорость коагуляции частиц в соответствии с теорией Смолуховского Чем отличаются константы скорости быстрой и медленной коагуляции  [c.179]

    Дерягин и Власенко (1948, 1957, 1962) сослались на экспериментальную работу Кудрявцева с золями золота, результаты которой соответствуют теории. При условии быстрой коагуляции величина l/rej увеличивается линейно со временем, однако при медленной коагуляции процесс замедляется и в некоторых случаях почти [c.109]

    Принято считать, что типичные лиофобиые системы агрегативно устойчивы благодаря проявлению электростатического фактора стабилизации и коагулируют при введении в систему сравнительно небольших количеств любых электролитов. Наименьшая концентрация электролита Си, при которой начинается коагуляция (медленная), называется порогом коагуляции. Быстрая коагуляция требует такой концеитрацин электролита с , после увеличения которой скорость коагуляции остается постоянной (когда фактор устойчивости W=, или потенциальный барьер = 0). [c.333]

    Из данных о зависимости начальной скорости коагуляции или длительности первой ее стадии (первоначальный участок быстрого подъема мутности коагулируемого латекса) от концентрации и валентности коагулирующего иона можно получить кривые Ig —Ig С (рис. 11.4), где W — коэффициент замедления в зоне медленной коагуляции. Это позволяет определить пороги быстрой коагуляции (ПБК) латекса. Из многочисленных данных следует, что ПБК латексов в большинстве случаев близки к известному соотношению = onst, вытекающему из теории ДЛФО (Сй = ПБК). Отсюда следует, что протекание первой стадии коагуляции латексов связано с электростатическим механизмом устойчивости. [c.194]

    Раздельно готовят растворы сульфата алюминия и жидкого стекла (силиката натрия). Чтобы образовался гель высокопрочндй структуры, требуется медленное протекание коагуляции (5—15 сек). Мгновенная коагуляция приводит к образованию рыхлых мёловидных [c.177]

    Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]

    В ходе исследования работы рабочего канала электросепаратора выявлено, что устойчивая коагуляция дисперсной фазы водно-топливной эмульсии начинается при градиенте напряженности электростатического поля 900 В/см. Интенсивность работы сепаратора возрастает по мере увеличения напряженности поля. Однако эта закономерность изучена не полностью. Первоначально в канале были установлены один горизонтальный электрод и решетка вертикальных электродов, поставленная вдоль потока, однако ввиду того, что такая система электродов создает довольно равномерное электрическое поле и процесс разделения эмульсии идет медленно, она не получила дальнейшего развития. Наиболее эффективными, [c.46]

    При больших значениях сил внутреннего трения нз сложных структурных единиц или надмолекулярных структур, находящихся во взвешенном состоянии, формируются пространственные внутренние сетки (ячейки), в которых в иммобилизованном виде находится неструктурированная жидкость. На рис. 2 схематично показана ассоциация частиц при гелеобразовагши и коагуляции. При гелеобразовании жидкая нефтяная система приобретает твердое (аморфное) состояние без фазового перехода, так как порядок дальнодействия между молекулами и структурнььми единицами при этом не изменяется. Такие системы имеют ближний порядок, 1при котором расположение каждой молекулы в надмолекулярной структуре и сложных структурных единиц в системе определяется положением соседей и не зависит от положения структурных единиц на дальних расстояниях. Система теряет подвижность (образуется гель), но не расслаивается или расслаивается медленно, хотя термодинамически и неустойчива (см. рис. 2,г). [c.34]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Агрегативно устойчивые и неустойчивые суспензии и лиозоли проявляют существенные различия при образовании осадков в результате коагуляции. Они имеют разные седиментацпонные объемы (объемы осадков) и структуры осадков. В агрегативно устойчивых системах оседание частиц происходит медленно и образуется очень плотный осадок. Объясняется это тем, что поверхностные слои препятствуют агрегированию частиц скользя друг по другу, частицы могут перейти в положение с минимальной потенциальной энергией. В агрегативно неустойчивой системе оседание чa т]П происходит значительно быстрее вследствие образования агрегатов. Однако выделяющийся осадок занимает гораздо больший объем, так как частицы сохраняют то случайное взаимное расположение, в котором они оказались при первом же контакте, силы сцепления между ними соизмеримы с их силой тялсести или больше ее. [c.344]

    Введение электролитов снижает высоту потенциального баркфа (см. рис. 46), но при небольших концентрациях электролита энергетический барьер остается достаточно велик и коагуляции частиц не происходит. Агрегация наступает при введении определенного для данной системы количества электролита, соответствующего порогу коагуляции. Порог быстрой коагуляции Ск определяет количество электролита, необходимое для коагуляции единицы объема коллоидной системы г[ри полном исчезновении потенциального барьера АЕ. При сохранении небольшого потенциального барьера в системе протекает медленная коагуляция. [c.162]

    Если очистке подвергается высококонцентрированная жидкость, тогда целесообразно подключать электроды 6 к разным полюсам источника тока, так как в этом случае частицы примесей будут интенсивно коагулировать и уклоняться под действием внешнего поля между противоположно заряженными соседними электродами 6. Если очищается ма-лозагрязненная жидкость, то рациональнее подключить все. электроды 6 к одному полюсу источника тока, а корпус 1 — к другому. В этом случае коагуляция частиц идет медленно.и внешнее поле между электродами 6 не нужно для работы устройства достаточно внешнего поля между каждым электродом 6 и корпусом 1, причем отсутствие электрического поля между сетчатыми электродами 6 уменьшит расход электро- [c.197]

    Если поверхностный потенциал уменьшается или ионные силы увеличиваются (одновременно), то энергетический барьер понижается до значения, сравнимого с величиной кТ, показывая, что система будет подвергаться медленной флокуляции. Переход от высокой стабильности через медленную флокуляцию к быстрой (т. е. к исчезновению потенциального энергетического барьера) является непрерывным, без резкой флокуляцион-ной точки. Поэтому важно рассмотреть зависимость между кривой потенциальной энергии п скоростью флокуляции. При этом надо учитывать, что величина общей энергии является разностью между двумя большими (почти равными) значениями. Следовательно, вычисленная кривая очень чувствительна к игнорированию различных факторов. Сопоставление теоретических и экспериментальных данных нри медленной коагуляции связано с большими трудностями. Тем не менее, это единственное средство проверки теории стабильности, так как пределы высокой стабильности или быстрой флокуляции являются независимыми переменными. [c.99]

    Ватиллон и Джозеф-Петит обнаружили, что при коагуляции латек-сов происходило уменьшение затухания при длинах волн, дающих максимальное затухание и увеличение — при больших длинах волн. Для любых длин волн можно па основании таблицы рассеяния света и теории Смолуховского предсказать ход кривой рассеяние — время. Кривые, построенные Ватиллоном и Джозеф-Петитом, показали, что нри условии измерения с длиной волны максимальной адсорбции соответствующий график должен быть линейным вплоть до 0,2т (где т — время). Предполагают, что этот график имеет одинаковую форму как для медленной, так и для быстрой коагуляции. Начальный наклон кривой можно припять как меру соответствующей скорости коагуляции. [c.104]

    Другая трудность в применении теории Смолуховского к обычным эмульсиям — влияние ортокинетической коагуляции. Она проявляется в том, что в высокополидисперсных системах, подвергающихся коагуляции, мелкие частицы исчезают значительно быстрее, чем крупные — эффект Вернера (1932). Ортокинетическая коагуляция заключается в увеличении скорости столкновения частиц сверх скоростей, обусловленных броуновским движением, возникающим из-за различных скоростей движения больших и малых частиц в гравитационном поле или при конвекции. Этот эффект ясно демонстрируется, например, в дисперсиях угольной сажи, к которым добавляют определенное количество соли, чтобы вызвать медленную коагуляцию. В некоторых случаях золи, медленно коагулирующие при стоянии, мгновенно коагулируют при интенсивном встряхивании. Такой эффект является авто каталитическим, так как при росте агрегатов неравенство скоростей увеличивается. В типичных эмульсиях с размером капель 0,1 —10 мкм и более ортокинетическая коагуляция может быть более важной, чем обычная коагуляция. Поэтому ни теория Смолуховского, ни любое ее усовершенствование не применимы к процессам быстрой и медленной коагуляции. [c.107]

    Механизм медленной коагуляции. При наличии энергетического барьера между частицами уменьшается возможность их столкновения. Смолуховский рассмотрел этот случаи путем формального введения параметра а — доли броуновских столкновений, вызываюш,их слипание частиц. В результате время коагуляции т увеличивается в 1/а раз. Однако этот формализм не раскрывает связь а с энергией взаимодействия частиц. Следует отметить, что эта зависимость не выражается, как в химической кинетике, простым коэффициентом Максвелла — Больцмана а =ехр (—AUlkT), где Ai/"—потенциальный энергетический барьер (Лоуренс и Майлс, 1954), так как концеитрация частиц в активирован [ ом состоянии является также функцией потока частиц. Другими словами, это есть случай диффузии через относительно высокий потенциальный энергетический барьер. [c.108]

    Теория Фукса приводит к следующей рабочей формуле ио сравнению с быстрой коагуляцией скорость медленной коаг мяции уменьшается на коэффициент В, который называется коэффициентом стабильности и дается выражением  [c.108]

    Не следует ожидать, что В будет иметь такое же значение для отдельной сферической частицы, приближающейся к мультинлетной частице, как для двух равных сфер, так как II — функция размера и структуры. Поэтому кинетика медленной коагуляции не является просто кинетикой быстрой коагуляции, умноженной на постоянный фактор. Соотношение дуилетов, триплетов и т. д. не будет одинако- [c.108]


Смотреть страницы где упоминается термин Коагуляция медленная: [c.226]    [c.259]    [c.259]    [c.609]    [c.334]    [c.314]    [c.97]    [c.288]    [c.109]   
Курс коллоидной химии 1984 (1984) -- [ c.237 , c.239 , c.249 ]

Курс коллоидной химии 1995 (1995) -- [ c.261 , c.263 , c.273 ]

Коллоидная химия 1982 (1982) -- [ c.266 , c.295 , c.299 ]

Курс коллоидной химии (1976) -- [ c.261 ]

Коагуляция и устойчивость дисперсных систем (1973) -- [ c.54 ]

Курс коллоидной химии (1984) -- [ c.237 , c.239 , c.249 ]

Физико-химия коллоидов (1948) -- [ c.225 ]

Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.324 , c.325 ]

Коллоидная химия (1960) -- [ c.0 ]

Учение о коллоидах Издание 3 (1948) -- [ c.289 ]

Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.156 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.186 ]

Краткий курс коллойдной химии (1958) -- [ c.143 ]

Физическая и коллоидная химия (1964) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика медленной коагуляции. Теория Н. Фукса

Коагуляция

Коагуляция коллоидов медленная

Коагуляция медленная кинетика

Коагуляция медленная понятие

Основы теории медленной коагуляции

Понятие о быстрой и медленной коагуляции

Фукс, теория медленной коагуляции



© 2025 chem21.info Реклама на сайте