Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы, основанные на действии катализаторов

    Неорганические вещества определяют люминесцентным методом, пользуясь в большинстве случаев органическими реагентами, действие которых основано на 1) образовании хелатов, флуоресценция которых отличается от флуоресценции реагентов 2) на образовании флуоресцирующих тройных комплексов, экстрагируемых органическими растворителями 3) на каталитических реакциях, связанных с изменением люминесценции определяемый элемент при этом является катализатором. [c.82]


    Сущность метода. Определение содержания смолообразующих веществ основано на том, что ненасыщенные соединения типа стирола, кумарона, индена и другие под действием концентрированной серной кислоты (катализатора) образуют высоко-кипящие продукты полимеризации, нелетучие с водяным паром и известные под названием инден-кумароновых смол. [c.287]

    ТЕРМИЧЕСКАЯ ПЕРЕРАБОТКА ТОПЛИВА — переработка различных видов топлива нагреванием без доступа воздуха до высоких температур (500— 1000 С) с целью образования кокса, полукокса, дополнительного количества бензина, древесного угля и дегтя, ароматических углеводородов, сырья для получения органического синтеза, газообразного топлива и др. Т. п. т. основана на свойствах органических веществ, которые являются главной составной частью любого топлива, разлагаться при нагревании. К термическим методам переработки топлива относят коксование и полукоксование твердого топлива, пиролиз твердого и жидкого топлива, газификацию твердого топлива, сжижение твердого топлива, крекинг нефти и нефтепродуктов, деструктивную гидрогенизацию и др. На выход и качество получаемых продуктов при Т. п. т. влияет температура и продолжительность ее действия, применение катализаторов и метод переработки топлива. [c.247]

    Восстановительные методы. Эти методы основаны на восста-новлении оксидов азота до азота различными восстановителями в присутствии катализаторов или под действием высоких температур. [c.64]

    Подбор оптимального катализатора. Несмотря на значительные усилия, предпринимаемые в области развития научных основ предвидения каталитического действия, до сих пор проблема создания эффективных методов подбора оптимального катализатора остается открытой. Основными требованиями, предъявляемыми к катализаторам, являются активность, селективность, стабильность, а также способность к регенерации, механическая прочность и прочность сцепления. Условия для достижения высоких показателей по тем или иным свойствам катализатора часто противоречивы. Поэтому проблема подбора оптимального катализатора, как правило, нетривиальна, трудно поддается логике однозначных решений и требует применения развитой стратегии принятия компромиссных решений. Здесь многое зависит от опыта, интуиции, квалификации исследователя, индивидуального и коллективного мнения специалистов-экспертов. Как правило, получаемая от экспертов информация имеет некоторую неопределенность, и окончательное решение несет на себе ее отпечаток. Отсюда применяемые для решения этой проблемы методы логического вывода должны носить характер неточного, или приближенного, вывода, обеспечивающего достижение наиболее достоверного ответа. [c.14]


    Каталитические методы анализа — вариант кинетических методов. Они основаны на измерении скорости химической реакции, протекающей в растворе при действии катализатора нередко катализатор является определяемым веществом. Известно много медленных реакций, скорость которых в определенных условиях увеличивается пропорционально концентрации введенного катализатора. Это дает возможность определить количество катализатора по концентрации продуктов реакции, образующихся за определенный промежуток времени. Для таких определений пригодны медленные реакции различных типов, однако наиболее распространены каталитические методы с использованием реакций окисления — восстановления. [c.446]

    Ферментативные методы основаны на использовании реакций, катализируемых ферментами — биологическими катализаторами, отличающимися высокой активностью и избирательностью действия. [c.110]

    Катализ является основным средством управления химическими превращениями, регулирования их скорости, направления реакции в сторону образования желаемых продуктов. Прогресс химической промышленности, возможность получения новых продуктов, использование более доступных сырьевых ресурсов, реализация новых совершенных технологических схем все в большей степени определяются успехом в изыскании достаточно активных катализаторов. Работы в этом направлении ведутся очень широко, но пока в значительной степени эмпирически, путем испытания тысяч веществ и их комбинаций, что требует громадной затраты времени и труда. Исключительно большое значение имеет поэтому выявление закономерностей, позволяющих предвидеть каталитическое действие, указывать пути подбора катализаторов для новых химических реакций. Не меньшее значение имеет и создание научных основ приготовления катализаторов, методов регулирования величины внутренней поверхности, пористой структуры и механической прочности катализаторов заданного состава. Эти свойства в значительной степени определяют качество промышленных контактных масс, а тем самым и важнейшие производственные показатели химических процессов, основанных на их применении. [c.3]

    Кинетические методы, каталитические методы основаны на измерении скорости реакций, протекающих в растворе при действии катализатора и использовании скорости для определения концентрации катализатора. Скорость многих химических реакций при прочих равных условиях зависит от концентрации катализа- [c.85]

    Методы обработки и типовая аппаратура. Для переработки нефти применяют физические и химические методы. В основе физических методов лежат различия в физических свойствах компонентов нефти в температурах кипения и кристаллизации, растворимости и пр. К физическим методам относится прямая гонка нефти. Химические методы основаны на расщеплении углеводородов и глубоких деструктивных превращениях под действием высоких температур и катализаторов. К ним относятся различные виды крекинга. [c.213]

    В последнее время постоянно повышаются требования к чистоте газов. Для того чтобы удовлетворить их как можно полнее, развиваются новые химические способы очистки, которые приходят на смену старым классическим методам. Химическая очистка чаще всего основана на высокоэффективном действии катализаторов или контактных масс. [c.176]

    Каталитические методы очистки газа от кислых компонентов основаны на взаимодействии извлекаемых компонентов с одним из компонентов газа или со специально введенным в смесь веществом на твердом катализаторе. Действие катализаторов сводится к многократному промежуточному химическому взаимодействию катализатора с реагирующими веществами, в результате которого образуются промежуточные соединения, распадающиеся в определенных условиях на целевой продукт и регенерированный катализатор. [c.71]

    Предложено большое число различных методов реактивации катализаторов каталитического крекинга, отравленных металлами. Все они основаны на физическом или химическом действии на катализатор. Ниже приводится их описание. [c.212]

    Большинство известных методов оценки стабильности нефтепродуктов основано на определении эффекта действия кислорода или воздуха на испытуемый нефтепродукт при повышенных температурах в присутствии катализаторов или без них. Этот эффект обычно выражается в смоло- и осадкообразовании и образовании коррозионных продуктов, растворимых в испытуемом продукте. Фиксация указанных продуктов термической и окислительной обработки составляет сущность большинства предложенных методов определения стабильности. [c.563]


    В пром-сти С. получают как побочный продукт при очистке нефти, прир. и пром. газов. Осн. методы очистки этих газов с получением С. - моноэтаноламиновый, вакуум-карбонатный, содовый. Принципиальная схема выделения С. из прир. и пром. газов заключается в следующем газ вводится в ниж. часть абсорбера, к-рый сверху орошается р-ром абсорбента, затем насыщенный HjS р-р поступает в отгонную колонну, где при нагр. горячим паром происходит десорбция С. из р-ра. В лаборатории С. получают действием Hj SO4 на FeS м. б. получен из Hj и паров S при 500-600 °С в присут. катализатора (пемза) удобный метод получения Hj S-нагревание серы с парафином. [c.330]

    В последние годы все более широко используются каталитические методы очистки промышленных газов, поэтому большинство исследований посвящено созданию новых и усовершенствованию уже существующих катализаторов. Предвидение каталитического действия имеет такой же смыс.ч, что и предсказание скорости химических реакций, но более сложно из-за участия в процессах дополнительного компонента — катализатора. Поэтому приемы подбора катализаторов весьма разнообразны и основаны на эмпирических или полу-эмпирических методах [149—151] с использованием экспериментальных данных о взаимодействии реагирующих веществ с катализатором (энергия и энтропия хемосорбции, состав и строение продуктов поверхностного взаимодействия, полярность образующихся связей и т. д.). Перспективность этого пути обусловлена прогрессом в области физических методов исследования хемосорбции и катализа. [c.97]

    Составление уравнений скоростей реакций, протекающих на поверхности катализатора при предположении, что поверхность однородна, основано на использовании адсорбционной изотермы Лангмюра [179]. Общая формулировка метода была дана Хиншельвудом [31, 161, 162] в форме так называемого закона действия поверхностей, аналогичного закону действия масс. Поверхность содержит определенное число одинаковых элементарных площадок, каждая из которых может удерживать одну молекулу или атом. При этих предположениях скорость поверхностно реакции [c.74]

    Контроль параметров процесса имеет очень важное значение в производстве синтетического аммиака, так как при отсутствии контроля почти невозможно осуществить процесс синтеза NH3, Температура в колонне синтеза измеряется при помощи термопар, подключенных к. многоточечным регистрирующим приборам и через переключатель — к указывающ,ИАг приборам. Действие лучших из этих приборов основано на методе компенсационного измерения электродвижущей силы (потенциометры). Применение термопар позволяет зондировать катализатор по двум или трем вертикалям для определения [c.606]

    Предвидение каталитического действия имеет такой же смысл, что и предсказание скорости химических реакций, но более сложно из-за участия в процессах дополнительного компонента — катализатора. Поэтому приемы подбора катализаторов весьма разнообразны и основаны на эмпирических или полуэмпирических методах - с использованием экспериментальных данных о взаимодействии реагирующих веществ с катализатором (энергия и энтропия хемосорбции, состав и строение продуктов поверхностного взаимодействия, полярность образующихся связей и т. д.). Перспективность этого пути обусловлена прогрессом в области физических методов исследования хемосорбции и катализа. [c.47]

    Не каждый элемент может играть роль избирательного катализатора в аналитических реакциях. Обычно это привилегия переходных элементов. Однако если идти косвенным путем, то круг определяемых веществ можно значительно расширить. Скажем, для алюминия нет каталитических реакций, но используется его способность ослаблять действие других катализаторов, и на этом основаны методы определения его микроконцентраций. [c.215]

    Газовый пористый электрод представляет собой пористый катализатор, частично заполненный газом, частично — раствором электролита. Если раствор полностью смачивает матрицу, то для поддержания равновесного заполнения необходимо сообщить газу избыточное давление. Электрохимические измерения показывают, что полный ток, генерируемый пористым электродом, существенно зависит от перепада давления [36—43]. Это свидетельствует о том, что относительное содержание жидкости и газа в пористом катализаторе имеет решающее значение для осуществления оптимальных условий работы электрода. Таким образом, газовый пористый электрод представляет собой существенно трехфазную систему, что значительно осложняет анализ его действия. Проще и нагляднее выглядит описание двухфазной системы — жидкостных пористых электродов. Поэтому мы начнем с изложения основ теории жидкостных электродов, имея в виду, что в дальнейшем при анализе газовых электродов будут использоваться те же идеи и методы. Мы будем обращать особое внимание на те моменты, которые являются специфичными для каждой из этих двух систем. [c.288]

    Различают три случая кинетического асимметрического превращения, хотя все они основаны на одном и том же принципе. Во-первых, два диастереомера могут образоваться или реагировать с различными скоростями, причем реакция не затрагивает непосредственно их асимметрические атомы. Этот процесс называют кинетическим методом расщепления. Во втором случае имеют дело с реакцией, при которой в соединении, уже обладающем асимметрией, возникает новый асимметрический центр под влиянием асимметрического реагента или катализатора, либо под действием физического фактора. Этот случай называют асимметрическим синтезом, или асимметрической индукцией. Наконец, может оказаться, что энантиомеры разлагаются с различными скоростями под влиянием асимметрического реагента. Этот случай можно назвать асимметрической деструкцией. [c.67]

    Поэтому, наряду с развитием рассмотренных общих методов оценки энергии промежуточного взаимодействия, значительную роль в предвидении каталитического действия приобретают приближенные методы, справедливые для отдельных групп катализаторов и реакций. Невозможность оценки полной энергии активного комплекса для стадий каталитического процесса заставляет ограничиваться учетом изменений энергий лишь/некоторых ванг-нейших связей, образующихся или разрывающихся при превращении активного комплекса. На этом в конечном счете основаны многочисленные корреляции каталитических свойств с разнообразными, часто довольно неожиданными термодинамическими характеристиками катализаторов и реагирующих веществ. [c.444]

    Химическая промышленность до недавнего времени в основном базировалась на методах классической химии каталитические процессы были немногочисленны, а в органическом синтезе ограничивались почти исключительно введением гомогенных катализаторов — кислот или щелочей. В результате увеличения производства синтетических продуктов значительно возросло число каталитических, и в частности гетерогенно-каталитических (контактных) процессов. В ряде отраслей промышленности органического синтеза гетерогеннокаталитические процессы, как технологически наиболее прогрессивные, стали преобладающими. В настоящее время свыше 90% вводимых в действие многотоннажных химических процессов являются каталитическими, большей частью гетерогенно-каталитическими. Поэтому разработка и обобщение теоретических основ технологии промышленных гетерогенно-каталитических процессов — актуальная задача. [c.5]

    Разработаны кинетические методы химического анализа, основанные на каталических реакциях, для определения очень малых количеств вещества, для определения растворимости веществ. Кинетические методы основаны на изучении зависимости между скоростью химической реакции и концентрацией реагирующих веществ, в том числе и катализатора. Эти методы называют также хронометрическими, или темпометрическими. П. Крум-гольц и Л. Шебеледи показали, что можно обнаружить от 10 до 10 2 г вещества. Е. А. Шилов и К. Б. Яцимирский доказали, что этим методом можно определять очень малые концентрации вещества (примерно 10 моль л). Например, при определении малых количеств меди используют ее каталитическое действие на реакцию восстановления железа (III) тиосульфат-ионами. Течение реакции определяют по изменению оптической плотности раствора или по изменению его мутности, по выделению газов. [c.571]

    Широкая производств, реализация пути 3 будет определяться в первую очередь эффективностью начальной стадии-газификации углей. В сер. 80-х гг. в пром. масштабе в мире действовало неск. сотен газогенераторов разл. типов, многие из к-рых совершенствуются в осн. путем применения повышенных давлений и т-р осуществлено по 3-5 смен поколений конструкций. В крупных опытно-пром. масштабах испытываются нетрадиц. методы газификации (в присут. катализаторов, в комплексе с атомными реакторами, в расплавах железа или солей и др.) мн. новые конструкции газогенераторов опробываются в составе небольших предприятий по произ-ву аммиака, уксусного ангидрида, а также в составе ТЭЦ. [c.357]

    Во-первых, должен быть установлен механизм образования связей С—С на таких обычных катализаторах, как восстановленное железо или кобальт. Трактовка механизма, как включающего полимеризацию поверхностных соединений и конкуренцию между полимеризацией и реакцией обрыва, регулирующей длину углеводородной цепочки, в какой-то мере является спекулятивной, поскольку она основана на косвенном Доказательстве. Как при метанировании, так и в синтезе Фищера — Тропша было постулировано образование частично гидрогенизиро-ванного на поверхности энола в форме радикала НСОН , а его реакции с образованием метана или конденсация с образованием углеводородной связи С—С были приняты в качестве медленной стадии. Недавние данные, однако, показывают, что наиболее медленной стадией может быть разрыв связи С—О в адсорбированном оксиде углерода. Ряд последних экспериментальных результатов подтверждает правильность этого частного механизма. Измерение кинетического изотопного эффекта показало, что на нанесенных N1, Ки и Р1 реакции Н2 + СО—>- и Оа+СО—>- протекают при идентичных скоростях, откуда следует, что водород не участвует в стадии, определяющей скорость [51]. Исследования на N1 и на N1—Си-сплавах показали, что необходимый для катализа ансамбль из смежных активных мест вызывает диссоциацию СО перед реакцией с водородом [52]. В соответствии с последними измерениями на никеле, проведенными методами ДМЭ и УФЭС, совместная адсорбция Нг и СО не приводит к образованию поверхностного энольного комплекса, поэтому может потребоваться предварительный распад СО, чтобы могло произойти гидрирование СО [53]. Эти данные согласуются с данными, полученными методом инфракрасной спектроскопии при изучении активных мест на Ки-, КЬ- и Pt-катализаторах, нанесенных на оксид алюминия, которые указывают на то, что в течение реакции Нг и СО поверхность покрыта преимущественно адсорбированным СО без каких-либо признаков существования поверхностного комплекса формила НСО— [54]. Должны быть выяснены такие важные свойства поверхности, как энергия связи СО, возможность одновременной адсорбции СО и Нг, а также необходимость придания катализаторам других структурных или электронных свойств. Они должны помочь в понимании вариаций селективности, наблюдаемых при сравнении действия различных металлов, а также вызываемых такими промоторами, как калий. [c.275]

    Некоторые реакции гидратации высших олефинов в спирты под влиянием разбавленных минеральных кислот, несомненно, связаны с промежуточным образованием сложных эфиров, которые в дальнейшем п ретерпевают гидролиз с выделением спирта и кислоты. В таких процессах гидратирующая кислота, повидимому, действует как катализатор. Низшие олефины, гидратирующиеся этим методом с значительно большей трудностью, обычно требуют сравнительно концентрированных кислот для ТО ГО, чтобы быть поглощеннькми при обыкновенных условиях. При этом осно вньими продуктами реакции являются обычно сложные эфиры, вследствие чего по лучение только одних спиртов становится невозможным. [c.330]

    Эпоксидирование олефинов осуществляется в присутствии кислотных катализаторов (кислот и катионообменных смол в их водородной форме). В наиболее модифицированном методе [136] олефины Се—С12 окисляются взаимодействием с Н2О2 и карбоксильной кислотой в присутствии катионообменных смол, содержащих сульфониевую —ОЗОзН), фосфониевую (—РО3Н2), фосфоновую (—РО2Н2), карбоксильную (—СООН) группы или их комбинации. Из сульфониевых смол наибольшее применение получили те, в которых сульфониевые группы присоединены к ароматическому кольцу (сульфированные полимеры дивинила и стирола), так как эти смолы в условиях реакции длительное время не теряют своей стабильности. Добавки небольших количеств карбоксильной кислоты значительно усиливают протекание реакций эпоксидирования. Возможно, что активирующее действие карбоксильных кислот основано, хотя бы ча- [c.162]

    Алкилирование олефинами. При использовании этого метода получения алкиларилсульфонатов исчезает различие между производными бензола и нафталина, так как при конденсации с олефинами начинает действовать общий принцип алкилирования ядра углеводородами , который был открыт в 1926 г. почти одновременно в двух исследовательских лабораториях . Реакция эта основана на том, что олефины, точно так же, как и спирты, могут реагировать с ароматическими углеводородами в присутствии конденсирующих агентов или катализаторов. Присутствие двойной связи оказывает как-будто даже более активное действие при алкилировании, чем присутствие вторичной ОН-группы. Так, олефины могут алкилировать также и бензол, в то время как вторичные спирты могут взаимодействовать только с более реакционноспособным нафталином. Кроме низкомолекулярных ненасыщенных углеводородов—этилена, пропилена и олефинсо-держащих крекинг-газов, для алкилирования применяются также и высокомолекулярные олефины. При повышенном давлении в присутствии хлористого алюминия как катализатора из пропилена и нафталина образуется с хорошим выходом изопропилнафталин [c.127]

    Ацетаты углеводов являются идеальными производными для выделения и очистки сахаров, поскольку их легко можно выделить в индивидуальном состоянии и затем превратить в исходный углевод. Гидролиз сложноэфирных групп катализируется как кислотами, так и основаниями, однако основания — более мощные катализаторы, чем кислоты. Для снятия ацетамидных групп используются сильные кислоты [1—4] и основания [5], но в последнем случае реакция часто затрудняется из-за пространственных эффектов. Ацетатные группы можно снять избирательно, не затрагивая ацетамидной функции [5—8]. Дезацетилирование метанольным раствором, содержащим каталитические количества метилата натрия [9—12] или метилата бария [13], основано на реакции переэтери-фикации и протекает в условиях, мало затрагивающих свободные сахара. Метанольный раствор аммиака [14] снимает ацетильные группы с образованием ацетамида. Этот метод пригоден только для гликозидов и других производных сахаров с защищенной карбонильной группой. Вместо аммиака можно применять метанольные растворы диметиламина [15] и других аминов. Несмотря на то что сахара весьма неустойчивы в щелочных растворах, было показано, что охлажденный насыщенный раствор гидроокиси бария является эффективным 0-дезацетилирующим реагентом, особенно в случае кетоз [161, где, по-видимому, образуются комплексы, предохраняющие сахар. Выбор наиболее эффективного метода дезацетилирования определяется, как правило, чувствительностью продуктов реакции к действию кислот и щелочей, растворимостью и т. д. Ниже приводятся несколько типичных методик дезацетилирования, которые в зависимости от конкретных условий могут быть модифицированы. Удаление ионов из реакционной смеси легко осуществляется с помощью ионообменных смол [23]. [c.119]

    Таким образом, фторированную окись алюминия, гидроксофториды и их смеси с фтористым алюминием можно отнести к классу катализаторов, активность которых в реакциях превращения углеводородов обусловливается кислотными свойствами их поверхности, т. е. наличием апротонных и протонных центров. Поэтому определение поверхностной кислотности различными методами и сопоставление активности катализаторов с их кислотными свойствами интересно и необходимо. Полученные результаты могут быть использованы при обсуждении и создании основ предвидения каталитического действия подобных катализаторов. [c.349]

    Осн. работы относятся к химии ароматических соед. Выявил общие Закономерности перемещения заместителей в ароматических ядрах, установил роль кислотных катализаторов при изомеризации ароматических соед. Исследовал нуклеофильное замещение в ароматическом ря/iy, на основании чего подобрал оптимальные условия пром. получения важных про/jyK-тов, в частности, л-нитроанилина и нафтол ов. Разработал (1963) метод получения ароматических фторсодержан их соед. действием фторидов 1цел. металлов на хлористые соединения. Изучил р-ции обмена атомов фтора в поли-фторароматических соед. на азот-, кислород- и серосодержащие заместители. Создал методы синтеза фторированных гетероциклических соед. Предложил ряд способов, пром. произ-ва фторорганических соед. ароматического ряда. [c.103]


Смотреть страницы где упоминается термин Методы, основанные на действии катализаторов: [c.120]    [c.494]    [c.154]    [c.518]    [c.226]    [c.394]    [c.608]    [c.593]    [c.150]    [c.291]   
Смотреть главы в:

Руководство по анализу кремнийорганических соединений -> Методы, основанные на действии катализаторов




ПОИСК







© 2025 chem21.info Реклама на сайте