Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы агрегация

    Причин отклонений от закона Бугера—Ламберта — Бера много. С изменением концентрации вещества в растворе меняется сила взаимодействия частиц (агрегация и дезагрегация, процессы полимеризации). Вещества, обладающие кислотно-основными свойствами, изменяют pH раствора, при этом возможно или образование различных комплексов, отличающихся друг от друга спектрами поглощения, или изменение степени диссоциации данного вещества, а ионы и нейтральные молекулы часто имеют резко различные спектры поглощения. Спектр поглощающего вещества может изменяться из-за накоплен гя в растворе некоторых непоглощающих, но химически активных веихеств. [c.23]


    Предотвращение агрегации первичных дисперсных частиц воз можно в результате действия трех факторов устойчивости дисперсных систем 1) кинетического, 2) электрического и 3) структурно-механического. [c.332]

    При изучении закономерностей процесса коагуляции разбавленных латексов установлено [28—30], что длительность первой стадии коагуляции электролитами определенной концентрации достигает близкого к постоянному значения. Эта концентрация и принимается за один из основных параметров коагуляции — порог коагуляции, при достижении которого снимается энергетический барьер, препятствующий агрегации частиц с разряженными адсорбционными слоями. [c.257]

    Рнс. 10.3. Зависимость степени агрегации т (1) и -потенциала (2) частиц кварца от концентрации ЦТАБ при pH 6. [c.178]

    Характерная картина образования кристаллических агрегатов может наблюдаться при добавлении к раствору мелкокристаллического парафинистого продукта в углеводородном растворителе какого-нибудь осадителя, например кетона, дихлорэтана и др. При этом происходит следующее. При растворении продукта в бензоле или в бензине и последующем охлаждении образуется раствор, содержащий неагрегированные кристаллики парафина, относительно равномерно рассеянные по всей массе раствора при добавлении к раствору осадителя понижается растворимость находящихся в нем как твердых, так и жидких компонентов обрабатываемого продукта. Это приводит к выделению из раствора и адсорбции на поверхности кристалликов некоторого количества наиболее высокомолекулярных и малорастворимых жидких компонентов. Введение осадителя сопровождается, возможно, также и изменением электрического заряда частиц (кристаллов) парафина. В результате указанных явлений разрозненные кристаллики парафина начинают собираться сначала в хлопья, а затем в комки, т. е. происходит агрегация кристалликов, аналогичная коагуляции дисперсной фазы коллоидного раствора. На рис. 11 [c.74]

    Полученные данные согласуются с литературными [23], согласно которым в грубых порошках, к которым можно отнести и ПВХ, насыпная плотность не зависит от размера частиц, так как определяется отношением силы тяжести частицы к пропорциональной ей силе трения между частицами. Агрегация нескольких полимер-мономерных капель приводит к изменению формы конечной частицы ПВХ и, как следствие, должна оказывать влияние на силы трения между частицами. На рис. 124 представлена зависимость (1 - е ) от параметра Р = = [l/2v 1/2 характеризующего степень агрегации [c.52]

    В процессе осаждения происходит соединение отдельных частиц— агрегация частиц. При этом в образующихся агрегатах частицы могут располагаться в строго определенном порядке. Такой процесс называют ориентацией. [c.24]


    В связи с тем, что осветление воды сопровождается процессами коагулирования частиц, агрегации мелких хлопьев и выделения хлопьев взвеси из воды, в осветлителях всех типов имеется зона реакции и зона осветления воды. Перемешивание в зоне реакции создается механическим или гидравлическим способом. Снижение скорости движения воды в зоне осветления достигается обычно увеличением площади поперечного сечения осветлителя. [c.58]

    При определенной величине макроцепи происходит агрегация макромолекул, их выпадение из раствора и стабилизация молекулами поверхностно-активных веществ, в результате чего формируются полимер-мономерные частицы, в которых затем протекает полимеризация. [c.147]

    Рассмотрим элементарный объем слоя с поверхностью А, перпендикулярной к направлению потока газа, толщина которого равна 2. Составим тепловой баланс по отношению к твердой фазе, заключенной в этом элементе объема. (Для простоты не рассматриваем процесс удаления воды, добавляемой в твердую фазу для агрегации частиц, как, например, в случае спекания сульфида цинка, хотя он, очевидно, может играть существенную роль.) [c.179]

    На основе одновременного рассмотрения экспериментальных данных зависимости степени агрегации частиц от концентрации добавленного электролита с результатами расчетов ио теории ДЛФО нами была предпринята попытка оценки толщины ГС у поверхности ЗЮг. Выло показано, что в зависимости от pH [c.175]

    Рнс. 10.4. Зависимость степени агрегации частиц ЗЮг от концентрации [c.178]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ Ю М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при [c.179]

    На рис. 10.4 (кривая /) приведены данные, характеризующие агрегацию золя кварца в присутствии ЦТАБ при рН = 3, когда исходный золь кварца уже агрегировал (степень агрегации т = 2,2). Видно, что при рН = 3, как и при рН = 6 наблюдается скачкообразное изменение устойчивости золя, однако полной стабилизации системы не происходит. Расчет энергии взаимодействия частиц 5102 по теории ДЛФО показывает, что наблюдаемая агрегация связана с первичным минимумом на кривой энергии взаимодействия частиц. Наличие структурной составляющей энергии взаимодействия, возникающей при перекрытии ГС воды, а также, возможно, адсорбционных слоев ЦТАБ на кварце, препятствует непосредственному сближению частиц и достижению высоких степеней агрегации. [c.179]

    Данные по агрегации частиц 5102 при pH = 6 под действием ЦТАБ в присутствии 0,1 М КВг показаны на рис. 10.4 (кривая 2). Наблюдаемый характер изменения степени агрегации частиц кварца от концентрации ЦТАБ в условиях сильно сжатого ДЭС также свидетельствует о значительной роли структурной составляющей расклинивающего давления в устойчивости данной системы. [c.179]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]

    Сказанное выше относится и к объяснению данных, полученных при коагуляции дисперсии алмаза в растворе ВаСЬ, когда с ростом pH происходит значительное изменение устойчивости системы, несмотря на то, что электростатическая составляющая энергии парного взаимодействия должна изменяться незначительно. По всей вероятности, такой разный характер зависимости устойчивости и электрокинетического потенциала от pH связан не только с присутствием ГС, но и с тем, что их структура и протяженность меняются с изменением pH и концентрации электролита. Последнее предположение подтверждается, в частности, при изучении агрегативной устойчивости дисперсии алмаза при рН = 9. При концентрациях ВаСЬ 5-10 и 1-10 2 моль/л степень агрегации т=1,8. Вклад ионно-электростатической составляющей при этих концентрациях крайне мал, частицы агрегируют в первичной яме ограниченной глубины. Наблюдаемый рост степени агрегации до /и = 2,3 при повышении концентрации ВаСЬ до 5-10 моль/л свидетельствует о росте глубины этой ямы, что может быть объяснено уменьшением вклада структурной составляющей вследствие перестройки ГС с ростом концентрации электролита. [c.185]

Рис. 10.9. Зависимость степени агрегации т частиц алмаза от времени в Рис. 10.9. <a href="/info/758296">Зависимость степени</a> агрегации т частиц алмаза от времени в

    Все приведенные выше данные о температурной зависимости устойчивости дисперсии ПА свидетельствуют о том, что повышение температуры при постоянной концентрации электролита приводит к частичному разрущению и утончению ГС. При этом появляется возможность сближения частиц, реализации более глубокого энергетического минимума и, следовательно, роста степени агрегации. Тип и концентрация электролита, как обсуждалось выше, в известной мере определяют структуру и протяженность ГС и, следовательно, оказывают влияние на характер изменения степени агрегации частиц ПА с ростом температуры. [c.187]

    В ЭТОМ случае латекс замораживали при —14 °С и снимали дифференциальную термограмму нагревания. Тепловой эффект плавления оценивали по площади пика. Сравнивали тепловой эффект плавления латекса и диализата с тем же содержанием электролита и эмульгатора, что и в латексе. По разности площадей пиков дифференциальных термограмм при одинаковом в обоих опытах общем количестве воды определяли содержание незамерзающей воды в латексе [528]. Измерения мутности латексов после оттаивания показали, что замораживание их сопровождается агрегацией частиц, степень которой возрастает с увеличением концентрации электролита. [c.193]

    После О. из водных р-ров образующемуся высокодисперсному осадку перед отделением часто дают возможность созреть , т.е. вьщерживают осадок в том же (маточном) р-ре, иногда при нагревании. При этом в результате т. наз. оствальдова созревания, обусловленного различием в р-римости мелких и крупных частиц, агрегации и др. процессов, происходит укрупнение частиц осадка, удаляются соосаж-денные примеси, улучшается фильтруемость. Св-ва образующихся осадков удается изменять в щироких пределах благодаря введению в р-р разл. добавок (ПАВ и др.), изменению т-ры или скорости перемешивания и др. факторам. Так, варьированием условий осаждения Ва804 из водиых р-ров удается увеличить уд. пов-сть осадка от 0,1 до 10 м /г и более, изменить морфологию частиц осадка, модифицировать поверхностные св-ва последнего. Образовавшийся осадок, как правило, оседает на дно сосуда под действием силы тяжести. Если осадок мелкодисперсный, для облегчения его отделения от маточного р-ра применяют центрифугирование. [c.414]

    Причин отклонения от закона Ламберта-Бугера-Беера много. С изменением концентрации вещества в растворе меняется сила взаимо-д ствия частиц (агрегация и дезагрегация, процессы полимеризации). При определенных физических (изменение температуры, облучение светом и т.д.) и химических (изменение pH, ионной силы раствора и т.п.) воздействиях на исследуемое вещество спектр его может значительно изменяться. Вещества, обладающие кислотно-основными свойствами, меняк)т величину pH раствора, при этом возможно или образование комплексов, отличающихся друг от друга спектрами поглощения, цли изменение степени диссоциации данного вещества, а ионы и нейтральные молекулы часто имеют различные спектры поглощения. Спектр поглощающего вещества может изменяться из-за накопления в растворе некоторых не поглощающих, но химически активных веществ. Отклонения от закона могут быть также обуслов- [c.188]

    При растворении в масле алкилфенольных, сульфонатных и некоторых других присадок образуется коллоидная система, созданная частицами с числом агрегации до 1000 и размером 10 —10 см. К ранее упоминаемым силам, объединяющим молекулы в крупные частицы-мицеллы, добавляются силы поверхностного натяжения. Во взаимодействиях мицелл между собой начинают проявляться электростатические силы отталкивания. Более крупные агрегаты — макромицеллы пластинчатого типа с числом агрегации 500—10000 — создаются мылами жирных кислот, например в пластичных смазках. Размер таких мицелл может достигать 10 см. [c.206]

    Обычно пептизируемость коагулятов уменьшается со временем результате развития точечных контактов между первичными 1стицамн происходит упрочнение коагуляционных структур. По-)бное самопроизвольное изменение свойств коллоидных раство-)8, коагулятов, студней и гелей называют старением колой д о в. Оно проявляется в агрегации частиц дисперсной фазы, уменьшении их числа и степени их сольватации (в случае вод-ых растворов — гидратации), а также в уменьшении поверхности вздела между фазами и адсорбционной способности. [c.339]

    Для анализа полученных данных в свете теории ДЛФО нами были проведены расчеты энергии взаимодействия частиц Si02 в приближении взаимодействия двух сфер, а также двух плоских поверхностей [509]. Поскольку концентрация ЦТАБ была сравнительно небольшой, в расчетах допускалось, что различием между потенциалом и -потенциалом можно пренебречь. Агрегативно устойчивый в воде золь Si02 при введении в систему ЦТАБ (концентрация 1-10 моль/л) начинает агрегировать. При концентрации ЦТАБ 1-10 моль/л -потенциал частиц Si02 резко изменяется (до —5,3 мВ по сравнению с —62 мВ в воде), а степень агрегации частиц возрастает до 2,2, Из расчета энергии взаимодействия следует, что при данной т концентрации ЦТАБ высота энергетического барьера составляет около 6 кТ, а вторичный минимум крайне мал (доли кТ). Кроме того, его положению отвечает расстояние 800 нм, что также делает практически не-  [c.177]

    Принимая, что посадочная площадка иона ЦТА+ составляет 0,2 нм [510] и учитывая развитые в работе [511] представления, можно найти степень покрытия поверхности частиц кварца ионами ПАВ вблизи изоэлектрической точки. Как показал расчет, она составляет около 0,1%. Учитывая этот факт, низкую степень агрегации и ее обратимый характер можтто объяснить на основе концепции ГС. При нейтрализации поверхностного заряда ионами ЦТАБ вблизи изоэлектрической точки образуются, вероятно, более прочные и протяженные ГС, что может быть связано с возникновением более благоприятных условий для развития водородных связей на силанольных группах теперь уже незаряженной поверхности SIO2. Это некоторым образом аналогично случаю увеличения протяженности ГС при снижении степени диссоциации силанольных групп на поверхности кварца при приближении к изоэлектрической точке [24]. [c.178]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Для подтверждения развиваемых представлений о значительной роли ГС воды в агрегативной устойчивости дисперсий гидрофильных частиц было исследовано влияние температуры на коагуляцию дисперсии алмаза. На основании литературных данных [30, 87, 477, 517] можно было ожидать, что с ростом температуры должен уменьшаться вклад положительной структурной составляющей в общую энергию взаимодействия частиц. Это, в свою очередь, должно снижать агрегативную устойчивость гидрофильных или гидрофилизированных дисперсий. Подтверждающее это положение экспериментальные данные, полученные для дисперсии алмаза в 5-10 М в растворе Ь1С1 при рН = 2 в интервале температур 20—50 °С приведены на рис. 10.9. Незначительная степень агрегации, наблюдаемая при 20°С (т=1,5), заметно увеличивается при возрастании температуры до 40 °С (т=1,8). Дальнейший рост температуры (50 °С) приводит к изменению самого характера процесса агрегации значительно увеличивается скорость коагуляции, образуются более крупные агрегаты, отсутствует выход на плато, наблюдавшийся при более низких температурах. При меньших концентрациях электролита (1-10 М Ь1С1) влияние повышения температуры становится менее заметным при 50°С в дисперсии алмаза наблюдается лишь незначительная степень агрегации. [c.187]


Смотреть страницы где упоминается термин Частицы агрегация: [c.26]    [c.130]    [c.113]    [c.137]    [c.322]    [c.211]    [c.26]    [c.75]    [c.98]    [c.32]    [c.103]    [c.311]    [c.151]    [c.151]    [c.176]    [c.176]    [c.177]    [c.178]    [c.184]    [c.186]   
Курс коллоидной химии (1976) -- [ c.262 , c.268 ]

Фильтрование (1980) -- [ c.190 , c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегация

Агрегация и дезагрс ацня высокодисперсиых твердых частиц при их ншельчешш

Агрегация твердых частиц

Агрегация частиц влияние размера частиц

Агрегация частиц за счет продуктов электролиза

Агрегация частиц неупорядоченная

Агрегация частиц положительно заряженные

Агрегация частиц при коагуляции

Агрегация частиц природа

Агрегация частиц противоионы

Агрегация частиц также Коагуляция, Флокуляция

Агрегация частиц удельная

Агрегация частиц упорядоченная

Агрегация частиц этерификация также Этерификация кремнезема

Туман фосфорной кислоты агрегация частиц

Экспериментальное изучение дальней агрегации коллоидных частиц и процессов образования ПКС



© 2025 chem21.info Реклама на сайте