Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы энергия отталкивания

    На основании материала, изложенного в предыдущем разделе, можно представить себе, как при сближении двух одноименно заряженных коллоидных частиц будет изменяться энергия их взаимодействия, являющаяся результатом сложения, молекулярных сил притяжения и электростатических сил отталкивания. Для этого рассмотрим потенциальные кривые (рис. IX, 6 и IX, 7), характеризующие зависимость энергии взаимодействия двух сближающихся частиц (энергия отталкивания отложена вверх, а энергия притяжения — вниз от нуля) от расстояния Н между частицами. [c.278]


    Устойчивость дисперсных систем определяется балансом энергии притяжения и энергии отталкивания частиц. Энергия притяжения обусловлена межмолекулярными силами, главным образом силами Ван-дер-Ваальса. В первом приближении эта энергия обратно пропорциональна квадрату расстояния между частицами. По теории ДЛФО (Дерягина, Ландау, Фервея, Овербека), учитывающей только электростатическую составляющую расклинивающего давления (давления отталкивания), энергия отталкивания убывает с расстоянием по экспоненциальному закону. [c.161]

    На основании рассмотрения сил притяжения и сил отталкивания между двумя частицами и количественного их проявления при сближении частиц можно рассчитать потенциальную энергию сближающихся частиц по соответствующим формулам и определить равновесное расстояние, на которое подойдут частицы друг к другу. Очевидно, энергия притяжения между сближающимися частицами возрастает. Максимального значения энергия притяжения достигла бы при полном слиянии частиц. Энергия отталкивания возрастает с уменьшением расстояния между частицами. В результирующем взаимодействии между частицами можно выделить минимум потенциальной энергии при достаточно больших расстояниях между сольватированными частицами, максимум потенциальной энергии — при средних значениях расстояний между частицами и снижение потенциальной энергии при малых расстояниях между частицами, которое определяет межмолекулярное связывание частиц друг с другом с энергией около 20 кДж/моль. Такое состояние является теплоустойчивым состоянием, то есть тепловой формы движения недостаточно для разрушения указанной связи частиц и в системе может быть создана пространственная сетка, которая легко разрушается при механическом встряхивании или нагревании. Такие системы обладают тиксотропными свойствами. [c.65]

    Весьма подробная информация о механизме реакции (18.1) может быть получена путем расчета поверхности потенциальной энергии. Заметный прогресс в этом направлении наметился в последнее время в связи с упомянутыми выше работами Базилевского, где обращается внимание на то, что применение полуэмпирических вариантов метода МО, явно не учитывающих неортогональность базисных функций (например, метод Хюккеля и др.), не позволяют дать правильную картину взаимодействия реагентов. На основе таких методов удается объяснить лишь притяжение между ними (этот эффект является наиболее существенным, когда расстояния между атомами частиц незначительно превосходят равновесные). Между тем при расстояниях, которые значительно превосходят равновесные, но меньше радиуса действия сил Ван-дер-Ваальса, наблюдается отталкивание между частицами. Это отталкивание можно описать, принимая во внимание неортогональность базисных функций. Поэтому во всех вариантах метода МО, где неортогональность явно не учитывается, не учитывается и эффект отталкивания. Последовательный учет неортогональности АО в методе МО ЛКАО в л-электронном приближении позволил Базилевскому представить потенциальную энергию реагентов в виде суммы, учитывающей энергии притяжения и отталкивания между ними, причем слагаемые этой суммы вычисляются в рамках теории МО при любом расположении атомов исходных частиц. Определение функции (2.3) является основой расчета кинетических параметров А к. Е. [c.177]


    Соотношение между энергиями отталкивания и притяжения частиц в области малых потенциалов (VI.109) имеет вид [c.334]

    На оси абсцисс откладывают расстояние между частицами. Энергию отталкивания принимают за положительную и откладывают на оси ординат вверх от начала координат. Изменение этой энергии с расстоянием выражает кривая /. Энергию притяжения, как отрицательную, откладывают вниз от оси абсцисс. Ее зависимость от расстояния выражает кривая 2. Суммарную энергию системы из двух частиц получают сложением энергии отталкивания и энергии притяжения  [c.427]

    Для R, близких к сумме радиусов частиц, энергия отталкивания между несколькими частицами с хорошей степенью приближения может быть представлена как сумма энергий отталкивания между всеми возможными парами из этих частиц. При этом каждое из парных взаимодействий считается независимым от всех остальных. [c.54]

    На малых расстояниях между частицами возникают дополнительные силы отталкивания, связанные с перекрыванием волновых функций. Для изолированных частиц энергию отталкивания обычно выражают законами типа [c.27]

    Как уже упоминалось, силы притяжения частиц являются не единственными. При тесном сближении молекул силы притяжения уравновешиваются силами отталкивания, которые становятся существенными на некоторых расстояниях между частицами. Энергия отталкивания от заполненных электронных оболочек молекул про- [c.17]

    Чтобы получить стабильную коллоидную дисперсию, необходимо придать частицам энергию отталкивания, достаточную для предотвращения флокуляции (при требуемой концентрации частиц, т. е. ОКП). Эта энергия отталкивания может быть обусловлена кулоновскими силами в соответствии с теорией двойного электрического слоя или за счет стерической стабилизации . Создать заряд на поверхности можно различными способами 1) предпочтительной адсорбцией ионов, 2) диссоциацией поверхностных групп, 3) изоморфным замещением, 4) адсорбцией полиэлектролитов, 5) накоплением электронов. [c.136]

    В соответствии с этим можно выделить три зоны устойчивости, медленной коагуляции (агрегации) с порогом с и быстрой агрегации с порогом с . Поскольку с ростом с снижается высота энергетического барьера ы1 (уменьшается энергия отталкивания), наблюдаемая закономерность объясняется следующим образом [27] при с=с появляется некоторая вероятность прохождения через барьер наиболее быстрых частиц (для которых ыП> 1), далее вероятность, эта увеличивается и при с>се достигает предельной величины —единицы. Таким образом, область быстрой коагуляции (агрегации) определяется как область, в которой все соударения эффективны. Вычисление скорости агрегации (коагуляции) сводится к подсчету числа столкновений. Наоборот, когда не все столкновения эффективны, коагуляция называется медленной и ее скорость определяется как числом соударений, так и их эффективностью. [c.87]

    Данные экспериментального изучения бимолекулярных реакций рекомбинации свидетельствуют о том, что в этих реакциях энергия активации имеет малое значение и изменяется в интервале 2—8 кДж. Значения вращательной и дисперсионной энергий частиц изменяются в этих же пределах. Это позволяет предположить, что энергия активации радикальных реакций рекомбинации есть результат наложения центробежной энергии отталкивания и дисперсионной энергии притяжения. Такое предположение впервые было сделано [c.86]

    Рассчитайте энергию отталкивания сферических частиц диоксида кремния диаметром 20 нм в водных растворах Na I при j)a -стояниях между поверхностями частиц 1, 2, 5, 10 и 15 нм. Постройте график зависимости иэ = Ц1г) при концентрациях электролита в растворе С(=5-10- и 2 = 5-10- моль/л. Примите равными потенциал диффузного слоя фд = 4-10-2 В, температуру раствора 293 К, диэлектрическую проницаемость 80,1. [c.184]

    Системы, в которых действует адсорбционно-сольватный фактор, могут быть агрегативно устойчивы даже при практическом отсутствии электрического потенциала на поверхности частиц. Та-Кие системы значительно менее чувствительны к добавлению электролитов. Действие электролитов в этих системах подобно высаливанию ими в растворах неэлектролитов, т. е. сводится только к уменьшению активности растворителя (воды). Особенно большую роль адсорбционно-сольватный фактор приобретает в системах с неполярными средами, где возможности диссоциации, и соответственно образования двойного электрического слоя проявляются слабо. Для создания количественной адсорбционно-сольватной теории устойчивости напрашивается проведение аналогий с теорией ДЛФО. Однако если энергию притяжения в системах с адсорбционно-сольватным фактором устойчивости можно определить исходя из представлений Гамакера и де Бура, то количественная оценка энергии гидратации, выступающая в роли энергии отталкивания частиц, до сих пор не разработана. Для оценки агрегативной устойчивости в обсуждаемых системах часто используют толщину адсорбционного слоя, равную половине расстояния между частицами, на котором энергия молекулярного притяжения уменьшается до величины кТ. [c.338]

    Суммарная потенциальная энергия взаимодействия частиц отрицательна на близких и далеких расстояниях (преобладает энергия притяжения). Она мол<ет быть положительна на средних расстояниях (преобладает энергия отталкивания). Максимум потенциальной кривой [c.161]


    В эмульсиях В/М толщина диффузного двойного слоя у) составляет несколько микрометров, так что здесь при увеличении расстояния между каплями энергия отталкивания убывает намного медленнее, чем в эмульсиях М/В. Вследствие этого при вычислении 7от для эмульсий В/М необходимо скорее вводить поправку, учитывающую эффект взаимодействия между многими частицами при их сближении (Альберс и Овербек, 1960), чем принимать во внимание отталкивание между двумя изолированными каплями, как это обычно делается для эмульсий М/В  [c.249]

    В соответствии с теорией ДЛФО соотношения (VI. 109), (VI. ПО) и (VI. 111) определяют поведение дисперсных систем. Их устойчивость или скорость коагуляции зависят от знака и значения общей потенциальной энергии взаимодействия частиц. Положительная энергия отталкивания с увеличением расстояния уменьшается по экспоненциальному закону, а отрицательная энергия притяжения Uuih) обратно пропорциональна квадрату расстояния (рис. VI. 15). В результате на малых расстояниях (при [c.330]

    Для объяснения устойчивости лиофобных коллоидов на основе энергии взаимодействия необходимо, чтобы на некотором расстоянии между частицами существовал максимум энергии отталкивания, высота которого зависела бы от концентрации электролита, уменьшаясь с ее повышением. Необходимо, кроме того, чтобы энергия отталкивания уменьшалась на малых расстояниях и в конце концов переходила в энергию притяжения, вызывающую слипание тех частиц, которые преодолели энергетический барьер отталкивания. [c.210]

    При невысокой концентрации электролита (с1<скр) толщина ДЭС велика на суммарной потенциальной кривой имеется потенциальный барьер А1/тах, показывающий преобладание энергии отталкивания (рис. 65,й). Если потенциальный барьер Л[/тах больще кинетической энергии самых быстрых частиц, последние не смогут подойти друг к другу и слипнуться — дисперсная система будет [c.117]

    Физическая теория устойчивости и коагуляции электролитами. Проанализируем, как изменяется энергия взаимодействия в зависимости от расстояния между двумя частицами. Построим графики, характеризующие отдельно энергию притяжения и энергию отталкивания как функции расстояния. Общую энергию взаимодействия можно получить сложением ординат. На рис. 44 показаны такие графики, часто называемые потенциальными кривыми. При их построении придержи- [c.110]

    Коагуляция осложняется обратным процессом — процессом пептизации или дезагрегации, т. е. переходом коагулята в золь. Этот процесс совершается самопроизвольно без затраты энергии на увеличение поверхности раздела фаз. Пептизация более вероятна в свежеосажденных системах и зависит от лиофильности осажденного золя. Чем выше лиофильность, тем более возможна дезагрегация. С течением времени в коагуляте протекают процессы взаимодействия частиц, приводящие к уменьшению дисперсности и поверхностной энергии. В этом случае коагуляция принимает необратимый характер, и пептизация в системе не происходит. Пептизация может наступить при введении в систему электролита, содержащего потенциалобразующие ионы. Например, амфотерные коагуляты типа А1(0Н)з пептизируются при добавлении щелочей или кислот в небольших количествах, но достаточных для увеличения заряда на частице. Иногда процесс пептизации коагулята может быть вызван при отмывании осадка от электролита (концентрационная коагуляция). Несмотря на кажущееся различие обоих путей (отмывка от электролита и добавление электролита), механизм пептизации в обоих случаях заключается в увеличении потенциальной энергии отталкивания, приводящем к дезагрегации частиц. [c.91]

    Природа сил притяжения и сил отталкивания различна, поэтому зависимости энергии притяжения и энергии отталкивания от расстояния имеют разный характер. Энергия притяжения обусловлена силами Ван-дер-Ваальса и изменяется обратно пропорционально квадрату расстояния между частицами. [c.427]

    Силы отталкивания, согласно теории ДЛФО, носят электростатический характер. Они проявляются, если две одноименно заряженные частицы сближаются настолько, что их диффузные слои взаимно перекрываются (рис. 27.2, а). Энергия отталкивания убывает с расстоянием по экспоненциальному закону. [c.427]

    Приведенные закономерности хорошо согласуются с поведением гидрофобных золей. Если частицы золя имеют высокий электрический потенциал и достаточной толщины диффузный слой, то при перекрывании ДЭС двух частиц энергия электростатического отталкивания преобладает над энергией межмолекулярного притяжения. Возникает энергетический барьер, препятствующий слипанию частиц. Сблизившиеся частицы вновь отдаляются друг от друга. Следовательно, система является агрегативно устойчивой (см. рис. 27.2,6). Сжатие диффузного слоя, например при добавлении электролитов, приводит к тому, что расстояние к (см. рис. 27.2, а) между твердыми частицами оказывается очень малым. На этом расстоянии энергия притяжения значительна и преобладает над энергией отталкивания. При таких условиях энергетический барьер очень мал и система агрегативно неустойчива, поэтому золь коагулирует (см. рис. 27.2, в). [c.429]

    Б. В, Дерягин с сотр. экспериментально измерил расклинивающее давление в двусторонних пленках растворов электролитов в воде. При низких концентрациях электролитов уравнение (У.И) выполняется удовлетворительно. Дерягин рассчитал также энергию отталкивания двух сферических частиц. [c.112]

    Если частицы находятся на таком расстоянии, что их диффузные слои частично перекрываются, то между ними возникают силы отталкивания в результате действия одноименных полей. Диффузные слои противоионов деформируются, происходит перераспределение ионов в контактирующих слоях. Соединению коллоидных частиц препятствует наличие потенциального барьера. На рис. 15 приведены кривые потенциальной энергии отталкивания, энергии притяжения и объединенная потенциальная кривая, результирующая их действие в зависимости от расстояния между частицами. Энергия отталкивания считается положительной, а энергия притяжения — отрицательной. Если высота потенциального барьера (II) и глубина второго минимума (III) незначительна, частицы сближаются между собой и коагулируют в результате ближнего взаимодействия (I). Расстояние зто составляет несколько десятых долей нанометра. Агрегативная устойчивость коллоидной системы соответствует значительной высоте потенциального барьера (II) и малой глубине второго минимума (III). Особый вид связи между частицами наблюдается при достаточно большой глубине второго минимума, при дальнем взаимодействии (расстояние около 10 нм). При этом частицы образуют пары, тройники или более сложные структуры, в которых не происходит агрегатирования частиц, т. е. дисперсность системы не изменяется. В ней наблюдается обратимое равновесие зольч агрегат. Подобное состояние системы является относитель- [c.118]

    Учет электростатических и осмотических сил, возникающих при этом, приводит к экспоненциальной зависимости энергии отталкивания Е двух частиц от расстояния между ними Н (рис. 99, кривая /). Кроме сил отталкивания при сближении частиц действуют силы притяжения, имеющие природу сил Ван-дер-Вааль-са. Наиболее универсальным типом этих сил являются лондо-новские силы, возникновение которых связано с частично син-хронизованн )1М движением электронов во взаимодействующих молекулах. Энергия взаимодействия всех молекул приводит к [c.239]

    В принципе нет оснований для того, чтобы применять такой метод к молекулам с ковалентной связью. Очевидно, что для таких частиц работа ионизации должна включать особый компонент, который соответствует работе образования ионной пары из ковалентной молекулы. Однако можно ожидать, что этот компонент будет подобен по форме кулоновскому, так что различие может заключаться попросту в коэффициенте пропорциональности. Более серьезное возражение, которое было выдвинуто Питцером, относится к пренебрежению в таких уравнениях, как уравнение (XV.12.1), компонентом, включающим энергию отталкивания, благодаря которой поддерживается равновесная концентрация ионных пар. Если эти силы значительно изменяются с изменением расстояния, например пропорционально можно показать, что энергия отталкивания составляет 1/(2 часть кулонов-ской энергии. Такое же значение имеет энергия взаимной поляризации и ван-дер-ваальсовых сил притяжения. [c.460]

    Энергией активации реакции называется минимальная энергия (в расчете на 1 г-моль), которой должны обладать реагирующие частицы, чтобы столкновение между ними привело к реакции. Частицы, энергия которых больиге или равна , называются активными. Эта энергия необходима для преодоления энергетического барьера реакции, т. е. по современным представлениям, для преодоления энергии отталкивания электронных облаков сталкивающихся молекул. Столкновение будет эффективным, если суммарная величина энергии сталкивающихся частиц равна или больше энергии активации Е, характерной для данной реакции. Если реакция сложная (протекает в несколько стадий), то параметр Е в уравнении Аррениуса не имеет простого физического смысла и представляет некоторую функцию энергий активации отдельных стадий или вообще эмпирическую величину. Одиако и нри этом [c.339]

    Объяснение химической связи в комплексах с помощью электростатических представлений. Начало разработки теории, объясняю1цей образование комплексных соединений, связано с исследованиями Косселя и Магнуса (Германия), проводимыми ими в 1916—1922 гг. В ее основу были положены электростатические представления. Ион-комплексообразователь притягивает к себе как ионы противоположного знака, так н полярные молекулы. С другой стороны, окружающие комплексообразователь частицы отталкиваются друг от друга, прп этом энергия отталкивания тем значительней, чем больше частиц группируется вокруг центрального иона. [c.119]

    Если между частицами существует отталкивание, в тpeчaющиeJ ся частицы должны обладать кинетической энергией, достаточной для его преодоления [76—79]. Эта энергия может иметь самые различные значения, так что в этом случае соединится только часть встречающихся частиц, кинетические энергии которых больше максимальной энергии, обусловленной их взаимным отталкиванием. [c.87]

    Имея отдельные выражения для энергии отталкивания и энергии прйтяжения частиц, простым сложением получим общую энергию взаимодействия между двумя параллельными пластинами (частицами), приходящуюся на единицу площади. Для области малых йотёнциалов суммарная энергия взаимодействия равна [c.330]

    Если между сталкивающимися частицами существует отталкивание, то необходимо обладать достаточной кинетической энергией, чтобы его преодолеть. Как известно из закона Максвелла, кинетическая энергия может быть самой разной, так что в этом случае слипнется только часть сталкивающихся частиц, а именно те частицы, кинетическая энергия которых превосходит максимальную энергию их взаимного отталкивания. Мерой средней кинетической энергии теплового движения является произведение кТ, поэтому эффективность соударений определяется отношением между Утах и АГ, где Ушах — максимальное значение энергии взаимодействия (отталкивания) между двумя частицами. Иными словами, величина коэффициента слипания в основном определяется энергетическим барьером отталкивания между частицами. [c.209]

    На основании представлений о роли осмотических сил в стабилизации дисперсных систем немецким ученым Фишером было предложено уравнение, позволяющее рассчитать энергию отталкивания Ооом при сближении частиц на расстояние меньше чем 26  [c.411]


Смотреть страницы где упоминается термин Частицы энергия отталкивания: [c.156]    [c.488]    [c.84]    [c.21]    [c.39]    [c.171]    [c.66]    [c.118]    [c.204]    [c.412]    [c.240]    [c.417]    [c.427]    [c.427]   
Курс коллоидной химии (1976) -- [ c.411 ]




ПОИСК





Смотрите так же термины и статьи:

Отталкивание

Отталкивание частиц

Энергия отталкивания

Энергия частиц



© 2025 chem21.info Реклама на сайте