Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ионов на поверхностях жидкость—воздух

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]


    Обмен ионами между фазами — не единственная причина возникновения двойного электрического слоя и скачка потенциалов на границе раздела фаз. Двойной электрический слой может образоваться в результате преимущественной адсорбции одного знака. Ионы противоположного знака притягиваются к поверхности электростатическими силами. Интересно, что двойной электрический слой адсорбционного происхождения может возникать на границе жидкость — воздух. Обстоятельное изучение этого явления провел А. Н. Фрумкин. Он установил анионы чаще адсорбируются на границе вода — воздух, чем катионы повышение гидратации ионов снижает их адсорбционную способность при адсорбции органических ионов выполняется правило Дюкло — Траубе. [c.82]

    Процесс адсорбции мицеллярных ПАВ на границе полярная твердая поверхность — жидкость имеет особенности, отличающие его от адсорбции на границе жидкость — газ. (В случае неполярной поверхности в водном растворе адсорбция ПАВ с ориентацией неполярной цепью к поверхности протекает аналогично адсорбции на границе раздела вода — воздух или вода— масло). Так, для заряженной поверхности в растворе, содержащем поверхностно-активные противоионы, первой стадией адсорбции будет ионный обмен между противоионами поверхности и ПАВ (электростатическое взаимодействие твердое тело — ионы ПАВ), в результате чего поверхность покроется слоем ионов ПАВ, ориентированных полярной группой к твердой, неполярной — к жидкой фазе. В дальнейшем с ростом концентрации ПАВ происходит мицеллообразование на поверхности ТЖ (например, бислойных мицелл, где углеводородные цепи будут ориентированы внутрь мицеллы, а полярные головки — в сторону раствора). Такому механизму адсорбции соответствует двухступенчатая изотерма, в которой первое плато соответствует в первом приближении ИЭТ (нейтрализация зарядов поверхностных групп), а второе —ККМ. [c.360]

    Гидрофобные силы, движущие ПАВ при их сегрегации на поверхностях воздух-вода по своей сути такие же, как и в случае адсорбции ПАВ на твердых поверхностях, но существенное различие поверхностей жидкость-твердое тело состоит в том, что поверхность твердого тела может служить источником дополнительных химических сил, таких как заряд или электростатические силы на ионизированных поверхностных фуппах, а также дисперсионных сил между поверхностным участком и гидрофобной частью ПАВ. В случае неионогенных ПАВ основными являются дисперсионные силы и водородные связи. В случае ионных ПАВ действуют электростатические силы, хотя нет достаточного количества данных для полного принятия этой точки зрения. [c.169]


    Коэффициент диффузии. Гетерогенную реакцию можно разбить на несколько стадий 1) подход вещества к поверхности, 2) адсорбция, 3) реакция, 4) удаление продуктов. Любая из этих стадий может определять скорость реакции. Если лимитирующими является первая и четвертая стадии процесса, то скорость этого процесса зависит от диффузии поэтому кинетические процессы такого типа называются ди4х )у ионными процессами. Большое значение имеют диффузионные я леиия в таких процессах, как испарение жидкостей на воздухе или в среде других газов, растворение вещества в разных растворителях и т. п. Скорость этих процессов определяется скоростью диффузии. [c.422]

    В очистке сточных вод в основном используются процессы пенной флотации, основанные на способности гидрофобных частиц прилипать к пузырькам газа (воздуха) и всплывать на поверхность с образованием пены. Отличительной особенностью флотации является большая скорость всплывания сфлотированных загрязнений с одновременной высокой степенью концентрации их в пенном продукте. Метод флотации достаточно широко применяется при очистке производственных сточных вод с целью выделения специфических загрязнений, таких, как жиры, нефть, нефтепродукты, бумажное волокно и др. В последние годы область применения процессов пенной флотации значительно расширилась. Эти процессы используются для разделения иловой смеси (взамен вторичного отстаивания), уплотнения избыточного активного ила и для доочистки сточных вод. В последнем случае флотация используется для удаления ПАВ и остаточных загрязнений — преимущественно взвешенных веществ (в случае предварительной коагуляции— скоагулированной взвеси). Процесс извлечения нерастворенных загрязнений, в том числе коллоидов, обычно называют пенной флотацией, а выделение из растворов ионов и молекул растворенных веществ путем адсорбции их на поверхности раздела жидкость — газ (например, ПАВ)—пенной сепарацией или пенным фракционированием. Применительно к выделению загрязнений из сточных вод такое разделение приемов флотации очень условно, так как сточные воды представляют собой сложную гетерогенную систему. Поэтому в любом флотационном процессе происходит в той или иной мере извлечение ионов, молекул, коллоидов и взвешенных веществ. [c.76]

    Удаление водорода после травления. Если, при кислотном травлении перечисленные выше меры не предотвращают поглощения водорода, значительная часть водорода выделяется из издедий при хранении если детали могут подвергаться воздействию нагретого воздуха, выделение водорода ускоряется. Погружение в горячую воду обеспечивает более эффективное выделение водорода, чем выдержка в атмосфере горячего воздуха. Это легко объяснимо. Предполагается, что водород удерживается в промежутках между атомами железа и, вероятно, может диффундировать к любой точке поверхности, но только в определенных точках создаются благоприятные условия для объединения пар атомов водорода в молекулы если некоторые подобные точки блокированы вследствие адсорбции таких ядов, как, например, мышьяк или селен, то значительно задерживается выделение водорода в виде газа. Если же поверхность погружена в воду, атомы водорода могут перейти в жидкость в любой точке в виде ионов в результате анодной реакции  [c.378]


Смотреть страницы где упоминается термин Адсорбция ионов на поверхностях жидкость—воздух: [c.195]    [c.327]    [c.187]    [c.131]    [c.12]   
Физика и химия поверхностей (1947) -- [ c.154 , c.179 , c.516 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция ионитах,

Адсорбция ионная

Адсорбция ионов

Адсорбция на поверхности жидкост

Жидкости ионные



© 2025 chem21.info Реклама на сайте