Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение специфических пептидов

    Осуществив расщепление белка на мелкие фрагменты, приступают к следующему этапу - определяют последовательность аминокислот в каждом из выделенных пептидных фрагментов. Для этого проводят серию химических реакций, которые впервые были предложены в 1967 году. Сперва пептид обрабатывают каким-либо реактивом, взаимодействующим только со свободной аминогруппой на его К-конце. Далее этот реактив активируют, воздействуя на него слабой кислотой. Теперь он специфически расщепляет пептидную связь, соединяющую [c.219]


    Весьма интересная в методическом отношении особенность антител иммунных сывороток заключается в их способности узнавать иммуноген, даже если изменились некоторые его физикохимические свойства. Например, противоферментные антитела зачастую распознаются в неактивной форме, а причинами неактивного состояния могут быть действие ингибитора, точковая мутация, удаление простетической группы или присутствие фермента в форме предшественника [1, 23]. Это свойство использовалось для изучения различных (физиологических, биохимических, генетических) аспектов при исследовании растительных ферментов [26]. Другой пример такого свойства продемонстрирован способностью специфических антител очищенных белков, выделенных из экстрактов растительных органов, реагировать с белками, синтезированными in vitro, особенно с теми из них, которые в избытке содержат сигнальный пептид однако примеры, которые дали исследования по молекулярной биологии растений, показали, что в данной области возможны отклонения от этого свойства [29], и поэтому в некоторых случаях для формирования конкретной антигенной структуры необходимы определенные посттрансляционные Модификации. [c.115]

    ВЫДЕЛЕНИЕ СПЕЦИФИЧЕСКИХ ПЕПТИДОВ [c.126]

    В отличие от приведенной гипотезы, придающей основное значение в механизме обучения явлениям облегчения нервной передачи и привыкания, другая гипотеза рассматривает в качестве химической основы обучения молекулярный код. Действительно, из мозга крыс, приученных избегать темноты, был выделен пептид, состоящий из 15 аминокислотных остатков, связанный с указанным поведенческим навыком при введении пептида в мозг необученных крыс они также начинали избегать темноты [133]. Это только один пример из множества сообщений о существовании в мозге специфических переносчиков приобретенных навыков поведения. Все же учитывая сложность структуры мозга [c.351]

    Окисленная рибонуклеаза. Действие химотрипсина на рибонуклеазу менее специфично, чем действие на этот субстрат трипсина. Об этом свидетельствуют более низкие выходы полипептидов при разделении гидролизата методом ионообменной хроматографии [154]. В выделенных полипептидах установлено наличие 151 аминокислотного остатка, в то время как в полипептидах, полученных в результате расщепления трипсином, обнаружено всего 124 остатка. По-видимому, это объясняется тем, что некоторые участки полипептидной цепи появляются более чем в одном из пептидных обломков. О более сложном составе гидролизата можно судить по небольшим количествам примесей (как правило, не выше 15%), присутствующих в большинстве основных фракций. Эти примеси не мешали определению аминокислотного состава фракций, но их присутствие еще раз подчеркивает трудности, которые встречаются при фракционировании смесей пептидов, полученных менее специфическими методами гидролиза. Гидролизаты рибонуклеазы были получены инкубированием в течение 24 час с ферментом при pH 7. При более кратковременном инкубировании гидролизат содержал дополнительно [c.204]


    При специфическом ферментативном гидролизе или химическом расщеплении любого белка среднего молекулярного веса получается довольно сложная смесь пептидов. Выделение и очистка всех пептидов, из которых состояла полипептидная цепь и которые содержатся в нефракционированном гидролизате, — задача достаточно трудная. Поэтому гидролизат белка рекомендуется сначала подвергнуть предварительному разделению. Среди современных методов фракционирования наиболее подходящим для этой цели является гель-фильтрация. [c.226]

    Если пептидная цепь настолько длинна, что рассмотренные методы не позволяют полностью установить ее строение, полипептид осторожно гидролизуют (с применением специфических ферментов или другими методами), расщепляя его на небольшое число более коротких пептидов. Полученную смесь тщательно разделяют и анализируют выделенные пептиды, после чего устанавливают структуру исходного полипептида. [c.814]

    Согласно изложенным выше представлениям, аминокислоты, отложившиеся на поверхности шаблона, образуют затем пептидную цепь. Этот процесс является ферментативным, однако нет никаких доказательств того, что в нем принимают участие специфические ферменты, и, следовательно, нет необходимости постулировать наличие таких специфических ферментов. Протеолитические ферменты, выделенные из органов, не являются специфическими, так как они катализируют гидролиз самых различных белков животного и растительного происхождения. Эти же ферменты могут катализировать и процесс синтеза пептидов из аминокислот, что было убедительно показано Бергманом и его сотрудниками [18, 20]. В предыдущих разделах данной главы уже указывалось, что синтез белков нельзя рассматривать просто как процесс, обратный их расщеплению, и что промежуточные реакции синтеза могут протекать иначе, чем соответствующие гидролитические реакции. Наиболее важным моментом является то, что мы не имеем решительно никаких доказательств специфичности ферментов, участвующих как в гидролизе, так и в синтезе белка. Специфичность образующегося белка можно вполне удовлетворительно объяснить специфической адсорбцией аминокислот на поверхности шаблона. [c.410]

    Рибосомы шероховатого ЭР удерживаются на мембране частично благодаря растущим полипептидным цепям, продвигающимся сквозь мембрану по мере своего синтеза (см. ниже). Однако, если образование полипептидных цепей прерывается под действием какого-либо ингибитора (например, пуромицина), то рибосомы все равно остаются связанными с мембраной шероховатых микросом. Это сродство значительно повышается в растворах с низкими концентрациями солей. Если в таких условиях смешать очищенные рибосомы с мембранами шероховатых микросом, предварительно лишенными рибосом, то такие ободранные мембраны вновь приобретают то же количество рибосом, которое было на них после выделения из клеток. Участок связывания с мембраной находится на большой субъединице рибосомы, но до сих пор еще неясно, с каким из многочисленных белков мембраны шероховатого ЭР связывается рибосома. Установлено, однако, что для связывания рибосом с мембраной ЭР в физиологических условиях требуется дополнительное, более специфическое прикрепление, для которого необходим вновь созданный белок, несущий сигнальный пептид. [c.43]

    Роль различных доменов, в особенности доменов, связывающихся с клетками, была изучена путем расщепления молекулы на отдельные домены протеолитическими ферментами или путем синтеза специфических белковых фрагментов химическим методом или с помощью рекомбинантных ДНК. Так, из протеолитических фрагментов был выделен домен, ответственный за связывание с клеткой, и определена его аминокислотная последовательность. Были приготовлены синтетические пептиды, соответствующие различным сегментам этого домена, и удалось выяснить, что за связывающую активность ответственна специфическая трипептидная последовательность (Arg-Gly-Asp, или R-G-D). Пептиды, содержащие эту RGD-последовательность, конкурируют за места связывания на клетке и таким образом ингибируют прикрепление клеток к фибронектину когда же эти пептиды связываются с твердой поверхностью, они обусловливают прикрепление к ней клеток. RGD-последовательность содержится не только в фибронектине - она является общей для многочисленных внеклеточных адгезивных белков и узнается целым семейством гомологичных рецепторов клеточной поверхности, связывающих эти белки (разд. 14.2.17). Хотя в молекулах, узнаваемых этими рецепторами, имеется общая трипептидная последовательность, каждый рецептор специфически узнаёт свою собственную небольшую группу адгезивных молекул таким образом, связывание с рецептором должно также зависеть и от других участков адгезивной белковой последовательности. [c.505]

    Области применения аффинной хроматографии расширяются, поокольку метод основан на специфических взаимодействиях биологически активных веществ. Как видно из табл. 11.1, этот метод успешно используется при выделении самых разных соединений. Наряду с этим он полезен при изучении различных систем на аффинных сорбентах можно разделять низкомолекулярные энан-тиомеры и удалять нежелательные вещества из живых организмов. -Например, аффинной хроматографией можно разделить на оптические антиподы 0,Ь-триптофан. Используя специфическое выделение меченых пептидов, можно определить пептиды активного центра фермента, связывающего участка антител или участка пептидных цепей на поверхности молекулы. Аффинная хроматография может быть использована для изучения возможности замены природных пептидных цепей ферментов различными модифицированными синтетическими пептидами. Активные центры ферментов или антител, связывающие свойства субъединиц, специфичность ферментов по отношению к различным ингибиторам, комплементарность нуклеиновых кислот, взаимодействие нуклеотидов с пептидами, влияние присутствия различных соединений на образование специфических комплексов и т. д. могут быть исследованы с помощью аффинной хроматографии. [c.282]


    Биологич кая активность выделенных препаратов мРНК оценивается по их способности синтезировать в бесклеточных системах соответствующие полипептидные цепи. Определяя величину синтеза специфических пептидов но отношению ко всем вновь синтезированным, можно определить также чистоту препарата мРНК- Необходимым условием при этом является использование для мечения белка не какой-нибудь одной аминоки лоты, но смеси по меньшей мере из [c.78]

    Эта интересная реакция, фактически представляющая собой процесс, обратный синтезу Штреккера, была подвергнута весьма тщательному исследованию Ван-Сляйком и его сотрудниками [194], которые нашли, что выделение ССЬ при действии нингидрина характерно только для а-аминокислот. В частности, М-ациламино-кислоты (и, следовательно, пептиды) вовсе не образуют СО2 . Таким образом, оказывается возможным определять аминокислоты в присутствии пептидов и белков (N-кар боксильный метод, см. стр. 169). Кроме того, образующийся в результате этой реакции альдегид является характерным для каждой аминокислоты, так как он отличается от последней только тем, что содержит на один атом углерода меньше. Специфическое определение такого альдегида служит средством определения соответствующей аминокислоты. Например, глицин и аланин в белковых гидролизатах могут быть определены по образующимся в результате реакции с нингидрином формальдегиду и уксусному альдегиду. [c.126]

    ПЕПСИН, фермент класса гидролаз. Мол. масса П., выделенного из желудка свиньи, ок, 35 ООО, р1 2,08 (для де-фосфорилиров. белка), оптим. каталитич. активность прн pH ок. 2,5—3. Активный центр включает карбоксильные группы, к-рые специфически реаг. с ингибиторами, содержащими зпокси- или диазогруппу. Ингибируется пепстати-ном, образуется в желудке позвоночных из предшественника (пепсиногена) отщеплением N-концегвого 42-членного пептида. Катализирует гидролиз белков и пептидов, участвует в процессах пищеварения. Специфичен к пептидным связям, образованным хотя бы одной гидрофобной аминокислотой, расщепляет также депсипептиды. Входит в состав лек. ср-в, применяется в сыроделии, а также для определения первичной структуры белков. [c.428]

    При эгом они основывались на специфическом действии ферментов. В пептидах, образовавшихся в результате трипсинного гидролиза, С-концевыми аминокислотами являются аргинин и лизин. Пептиды, выделенные из гидролизата рибонуклеазы химотрипсином, содержат основном в качестве концевых С-аминокислот остатки тирозина и фенилаланина. [c.524]

    Методы выделения, очистки и аналитические характеристики пептидов описаны подробно в разд. 3.3. Изучение связи между строением и биологической функцией пептидов ведет к познаванию молекулярного механизма их действия. При этом главное внимание обращается на выяснение активного центра и определение аминокислотной последовательности, которая ответственна за рецепторное связывание, транспорт и иммунологическое поведение. Большой практический интерес имеет также модификация природных пептидов для пролонгирования их действия и расширения практического применения. Такого рода исследования можно проводить только тогда, когда соответствующий природный пептид имеется в достаточном количестве. Необходимые для изучения пептиды можно получать путем частичного ферментативного расщепления экзопептидазами или эндопептидазами или же с помощью специфических химических методов расщепления (бромцианом или Ы-бромсукцинимидом) можно также использовать замещение, элиминирование или превращение функциональных групп соответствующих пептидов. Возможности модификации природных пептидов ограничены тем, что часто исследователь располагает лишь нанограммо-выми количествами этих веществ. [c.90]

    Весь наш опыт доказывает, что обучаемость не есть сохранение информации в виде отдельных молекул, т. е. здесь нет аналогии с кодированием информации в молекулах ДНК. Поиск молекул памяти был популярен в течение долгого времени, например, когда пептид скотофобин (название этого вещества связано с предположением, что оно обусловливает боязнь темноты) был выделен из мозга крыс, дрессированных бояться темноты. Хотя эксперименты такого рода привели в тупик, они не исключают возможности, что обучение связано с очень специфическими молекулярными изменениями в нервной системе и могут быть, в конце концов, объяснены с биохимических позиций. [c.333]

    Преимущество фтора в качестве замещаемой группы по сравнению с более тяжелыми галогенами привело к тому, что именно 2,4-динитрофторбен-зол (реагент Зангера) находит применение как специфическое средство для характеристики первичных и вторичных аминов. Особенно широкое применение находит этот реагент для пометки концевых единиц в молекуле белков и полипептидов (гл. 26). Пептид обрабатывают реагентом Зангера и в образующемся веществе под действием гидролиза расщепляются амидные связи, соединяющие аминокислотные единицы в данном пептиде. Выделение и идентификация этого аминокислотного фрагмента, несущего динитрофениль-ную группу, выявляет концевую единицу данного пептида. [c.320]

    В случае аффинной хромографии выделение пептидов осуществляется в результате специфического и обратимого связывания с сорбентом. Благодаря этому пептиды можно концентрировать из большого объема, многократно использовать колонку, наконец, проводить весь эксперимент в течение короткого времени. Конечно, предварительно надо потратить усилия на синтез сорбента, однако благодаря высокой специфичности и несложной технике эксперимента эти усилия оказываются вполне оправданными. Поскольку методы синтеза аффинных сорбентов рассмотрены в гл. 13, в данном разделе будут приведены отдельные примеры, которые хорошо демонстрируют возможности метода. [c.415]

    Число пептидов, выделенных из гидролизатов белков, в настоящее время измеряется сотнями. Во многих случаях была установлена структура выделенных пептидов, некоторые из них. как оказалось, сами по себе обладают интересными биологическими свойствами. Например, Ь-серил-Ь-гистидил-Ь-лейцил-Ь-валил-Ь-глутаминовая кислота, выделенная из гидролизата инсулина, специфически ускоряет развитие некоторых бактерий (стрептогениновая активность). [c.814]

    Взаимодействие пептидных групп с ионами щелочных и щелочноземельных металлов, по-видимому, имеет в значительной степени ионный характер, но получены доказательства того, что это взаимодействие сохраняется и в растворе. Химические сдвиги протонов в спектрах ядерного магнитного резонанса (ЯМР) указывают на то, что взаимодействие металл — амидный кислород аналогично тому, которое описано для структур, существующих в растворах М-метилацетамида и ионов А1 +, ТЬ , Мд + и Ы+ в таком же порядке уменьшаются длины связей металл—лиганд [46, 47]. Не будучи специфическим свойством отдельных связей, взаимодействия металл — карбоксильный кислород и металл — пептидный кислород доказываются также тем фактом, что растворимость аминокислот и пептидов в воде изменяется в присутствии галогенидов щелочных и щелочноземельных металлов [48]. Например, [Са(Н01у-01у-01у) (Н20)2]С12-Н20 (XV)—это только один из ряда стехиометрических комплексов, которые образуют с аминокислотами и пептидами хлориды, бромиды и иодиды Са(П), 5г(П) и Ва(П). Для всех выделенных комплексов найдено, что растворимость пептида в растворе соли больше, чем в чистой воде [48]. Дополнительным доказательством взаимодействия кальция с пептидом в растворе служит наблюдение обратного факта — растворимость иодата кальция в воде возрастает в присутствии глицилглицина и некоторых других пептидов и аминокислот [49]. Увеличение растворимости иодатов щелочноземельных металлов было использовано для определения констант устойчивости комплексов металлов с пептидами в растворе [50]. И термодинамическая, и кинетическая устойчивость этих комплексов невелика. [c.164]

    При глубинном выращивании S. griseus выделяет значительно больше протеиназ в среде с низким содержанием азота. Это, по всей вероятности, связано со специфической реакцией стрептомицета на понижение содержания усвояемых форм азота в среде. Кроме того, выделение протеиназ зависит от источника азота. В присутствии в среде белка образование протеиназ наиболее низкое, в среде с пептидами — высокое, в средах, содержащих аминокислоты, — еще выше. [c.228]

    Снижение или полную отмену побочных эффектов при вакцинации связывают с получением вакцин нового поколения. Наметилось несколько технологических подходов к разработке таких вакцин. Один из них состоит в выделении из массы отдельных антигенов инфекционных микроорганизмов тех, которые обладают наибольшим протективным эффектом, т.е. инициируют наибольшее количество соответствующих по специфичности антител или обеспечивают преимущественный рост клона специфических Т-лимфоцитов. Однако подобная процедура приводит к снижению иммуногенности вьщеленных антигенов. Задача состоит в получении такого вакцинного материала, который, с одной стороны, сохранял бы узкую, наиболее характерную антигенную специфичность патогена, а с другой — был бы достаточно иммуногенен для инициации сильного протективного иммунитета. В качестве носителей с адъювантным эффектом для белковых антигенов или пептидов используют иммунологически инертные полимерные молекулы Ь-аминокислот (например, Ь-лизин), химических соединений, а также липиды, организованные в гранулы (липосомы), внутри котсфых содержится антиген. [c.340]

    Следующий этап эксперимента — это выделение белка на аффинных колонках, содержащих соответствующую ДНК, Этот этап необычайно труден, так как содержание белков, узнающих специфические последовательности ДНК, исключительно низкое. Между тем выделение белка пока является необходимым этапом как для изучения его биологической активности, так и для последующего клонирования, для которого надо или иметь антитела к белку, или знать последовательность какого-либо из его пептидов. Тогда можно выявить соответствующий клон либо иммунологически, либо гибридизацией с химически синтезированной олигонуклеотидной пробой. [c.168]

    Для выделения и идентификации С-концевых областей белков и пептидов предложено несколько методик. Все эти методики обеспечивают избирательное отделение С-концевого пептида от всех других пептидов методами ВЭЖХ, ионообменной хроматографии, двумерного высоковольтного электрофореза или специфического связывания ТФ-посителями. [c.482]

    Быстрое, и даже бурное развитие протеомики в последние несколько лет определяет интенсивное использование в исследовательской работе рекомбинантных белков. Естественно, работа с индивидуальными белками требует их эффективной очистки. Как всегда, любая задача может быть решена разными способами. Использование для быстрого выделения индивидуальных белков аффинной метки (affinity tag) в виде специфической аминокислотной последовательности, присоединенной к одному из концов исследуемого полипептида, позволяет просто и эффективно решать эту задачу [156]. Присоединение аффинных последовательностей проводят методами генной инженерии, объединяя в составе экспрессируюш,его вектора кодируюш,ую часть исследуемого гена с последовательностью нуклеотидов того или иного пептида или полипептида, обладаюш,его избирательным сродством к лиганду (табл. 5). В целом, системы очистки рекомбинантных белков, основанные на аффинных аминокислотных последовательностях, обладают целым рядом уникальных свойств. Так, они позволяют проводить выделение любого гибридного белка в один этап путем его адсорбции на соответствующем носителе. Сама аффинная метка оказывает минимальное влияние на третичную структуру основного белка и может быть легко удалена из гибридного полипептида. Кроме того, она допускает проведение быстрой и точной количественной оценки содержания белка в искусственных системах экспрессии рекомбинантных генов. Тем не менее использование каждой аффинной метки требует соблюдения конкретных условий, которые не являются универсальными и могут оказывать сильное влияние на биохимические свойства выделяемого белка. [c.124]

    В целом, введение аффинных меток в виде обсуждавшихся выше пептидных и полипептидных последовательностей существенно облегчает очистку меченых таким образом рекомбинантных белков, а также предоставляет дополнительные возможности наблюдать за эффективностью экспрессии рекомбинантных генов. Выбор для этих целей системы очистки зависит от конкретного белка, который предстоит получать в очищенном состоянии, а также от целей его дальнейшего использования. В ряде современных систем в рекомбинантные белки вводится двойная аффинная метка, одна из которых служит для очистки белка, а другая - для мониторинга за его биосинтезом. Также с помощью двойной метки может быть достигнута большая степень очистки рекомбинантных белков. Разработаны множественные аффинные аминокислотные последовательности, которые включают в себя кальмодулин-связывающий пептид, специфический сайт расщепления протеиназой и белок А для иммобилизации всей рекомбинантной конструкции. С помощью этих систем удается изучать белок-белковые взаимодействия путем выделения соответствующих белковых комплексов при исследованиях протеома [183, 184]. Методы иммобилизации белков с помощью аффинных последовательностей используются при создании пептидных и белковых микрочипов, клонотек на их основе, для адресной доставки белков и во многих других приложениях. О некоторых из них будет дополнительно рассказано в разделе П.3.2. [c.132]

    Одним из таких подходов, имеющих прямое отношение к обсуждаемой теме, является отбор белковых лигандов фагового дисплея непосредственно в живом организме [100, 101]. В этом случае суспензию фаговых частиц дисплея вводят в кровоток экспериментального животного, через некоторое время животное забивают и из исследуемого органа выделяют находящиеся там фаговые частицы. Выделенные фаги размножают в бактериальных клетках и проводят новый раунд отбора. После нескольких раундов удается выделять фаговые частицы, специфически задерживаемые данным органом, а следовательно, экспрессирующие на своей поверхности лиганды, специфичные в отношении рецепторов органа (или ткани). При этом остальные органы и ткани организма осуществляют отрицательный отбор тех фаговых частиц, которые экспрессируют лиганды универсальной специфичности и взаимодействуют со всеми органами и тканями организма. С использованием такой системы отбора пептидов фагового дисплея удалось получить пептидные аптамеры, специфически взаимодействующие с многими тканями экспериментальных животных [102-105], в том числе с клетками гладких мышц мышей в области рестеноза [106], а также эпителием атеросклеротических сосудов [107]. [c.348]

    Третий тип Т-клеточных клонов был выделен от больных раком молочной железы и яичников. Недавно получены данные о том, что эти линии способны отвечать специфически, но нерестрик-тированно на повторяющийся сердцевинный пептид муцина. Пока неизвестно, презентируется ли указанный пептид в комплексе с молекулами МНС или другим способом (например, действуя как суперантиген). Отвечающие на муцин [c.384]


Смотреть страницы где упоминается термин Выделение специфических пептидов: [c.116]    [c.125]    [c.127]    [c.128]    [c.344]    [c.368]    [c.191]    [c.193]    [c.377]    [c.122]    [c.23]    [c.105]    [c.166]    [c.166]    [c.230]    [c.349]    [c.298]   
Смотреть главы в:

Аффинная хроматография -> Выделение специфических пептидов




ПОИСК





Смотрите так же термины и статьи:

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте