Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность точка изоэлектрическая

    Если потенциалопределяющими ионами являются ионы Н+ и ОН , то отсутствие заряда на поверхности (например, оксидов элементов) будет соответствовать определенному значению pH, называемому изоэлектрической точкой. В этой точке числа положительных и отрицательных зарядов одинаковы — общий заряд поверхности равен нулю. Очевидно, что изоэлектрическая точка зависит от кислотно-основных свойств вещества. Сродство к протону можно представить следующими константами диссоциации  [c.50]


    Само по себе ядро мицеллы нерастворимо в данной среде и, следовательно, не сольватировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя сольватированы (рис. 126). Благодаря этому вокруг ядра создается ионно-сольватная оболочка. Толщина ее зависит от распределения ионов двойного слоя чем больше противоионов находится в диффузном слое, тем больше и толщина сольватной оболочки. Сжатие двойного слоя уменьшает степень сольватации ионов. В изоэлектрическом состоянии (дзета-потенциал равен нулю) сольватная оболочка вокруг ядра предельно тонка (порядка Ю м). Такие тонкие слои не защищают мицеллы от слипания при столкновении, в результате начинается агрегация частиц. Толщина сольватных слоев в устойчивых золях значительно больше и достигает 10 м. [c.327]

    Для более основных оксидов наблюдается увеличение положительного заряда на поверхности с ростом кислотности среды. Гидроксильные группы уходят с поверхности и в растворе нейтрализуются ионами водорода. Например, золь оксида железа более устойчив в кислой среде, в которой частицы имеют положительный заряд. Менее основные оксиды, такие, как кремнезем, приобретают в кислой среде положительный заряд (ниже изоэлектрической точки) в результате адсорбции ионов водорода на гидроксильных группах поверхности. [c.339]

    При использовании в качестве модификаторов поверхности белков частицы золя в кислой среде вследствие диссоциации основных i pynn белка (диссоциация кислотных групп подавлена) приобретают положительный заряд. В щелочной среде, когда диссоциируют иреимущественно карбоксильные группы белка, частицы золя заряжены отрицательно. При значениях pH, отвечающих изоэлектрической точке белка, электрофоретическая подвил иость золя равпа пулю. [c.100]

    Наличие на поверхности частиц групп, способных образовывать водородные связи, определяет возможность эпитаксиального механизма образования ГС. Так, исключительно высокая устойчивость золя SIO2 вблизи изоэлектрической точки [24, 502, 503] может быть также объяснена наличием граничных слоев значительной толщины, образованных при ориентации молекул воды за счет водородных связей около незаряженной поверхности, несущей недиссоциированные силанольные группы. [c.173]


    Некоторое различие между ТНЗ и ИЭТ (изоэлектрической точкой, см. гл. XI) может быть обусловлено адсорбцией диполей воды на поверхности, не влияющей на ТНЗ, но изменяющей ИЭТ, а также специфической адсорбцией ионов. [c.199]

    Для тирозина и триптофана зависимость адсорбции от потенциала во всех случаях сохраняет экстремальный характер. В нейтральной среде максимум адсорбируемости находится в области анодных потенциалов для тирозина при -1-0,6 В (относительно нас. каломельного электрода) и для триптофана при +0,7 В. При этих потенциалах в результате фарадеевских процессов молекул воды объемный раствор подкисляется и pH раствора соответствует pH изоэлектрической точки аминокислоты. Переход к кислым и щелочным средам приводит к сдвигу максимумов заполнения поверхности адсорбатом в катодн>то и анодную области потенциалов поляризации соответственно. Такое поведение указанных аминокислот согласуется с энергией электростатического взаимодействия поляризованной поверхности адсорбента с заряженными формами (катионами и анионами) слабого органического электролита. [c.5]

    Не имеют поверхности раздела с растворителем Устойчивость растворов в большой степени связана с наличием сольватной оболочки Концентрация растворов составляет 12—15 /о и выше Частички лиофильны Размер частичек больше 100 ммк Значительная часть водной оболочки удерживается за счет полярных (неионогенных) групп и поэтому сохраняется в изоэлектрической точке [c.175]

    Имеют большую удельную поверхность раздела с растворителем Устойчивость в большой степени связана с наличием двойного электрического слоя Концентрация растворов невысока — до 1 /о Частички лиофобны Размер частичек 1 —100 ммк Водная оболочка создастся за счет водных оболочек противоионов диффузного слоя, поэтому в изоэлектрической точке отсутствует [c.175]

    Добавление сильных электролитов к растворам высокомолекулярных соединений ведет также к понижению их -потенциала, который может возникнуть в результате адсорбции на поверхности коллоидных частиц ионов, содержащихся в растворах в виде примесей. Если же добавляют электролиты, изменяющие реакцию среды, то происходящее смещение pH может привести к частичному или полному подавлению диссоциации ионогенных групп и тогда частицы коллоида переходят в изоэлектрическое состояние. Так, (МН4)2304 смещает pH растворов в кислую сторону, в результате чего понижается заряд белковых частиц. [c.213]

    Заряд частицы ВМС. Изоэлектрическая точка (ИТ). Одной из важных проблем, возникающих при изучении ВМС, является проблема появления на поверхности молекул заряда, который возникает по разным причинам. [c.352]

    Для амфотерных твердых тел и макромолекул, содержащих различные ионогенные группы (белки, нуклеиновые кислоты и др.), величина и знак термодинамического потенциала поверхности зависят от pH раствора при этом изоэлектрической точке (изоточке) отвечает определенное значение pH. [c.210]

    Следует подчеркнуть, что эффект разрушающе-структури-рующего влияния ионов на ГС должен зависеть от концентрации ионов вторичная гидратация наиболее ярко проявляется при достаточно высоких константах комплексообразования и вдали от изоэлектрической точки, а также на поверхностях, активные группы которых не способны (или обладают слабой способностью) образовывать водородные связи с молекулами воды. Приведенные выше возможные механизмы влияния ионов на ГС необходимо учитывать при рассмотрении устойчивости конкретных дисперсных систем. [c.173]

    За изоэлектрической точкой преимущественно адсорбируются ионы серебра, поэтому поверхность частиц хлорида серебра приобретает положительный заряд. Если в раствор введен флуоресцеин, он находится в протолитическом равновесии со своими анионами  [c.236]

    Принимая, что посадочная площадка иона ЦТА+ составляет 0,2 нм [510] и учитывая развитые в работе [511] представления, можно найти степень покрытия поверхности частиц кварца ионами ПАВ вблизи изоэлектрической точки. Как показал расчет, она составляет около 0,1%. Учитывая этот факт, низкую степень агрегации и ее обратимый характер можтто объяснить на основе концепции ГС. При нейтрализации поверхностного заряда ионами ЦТАБ вблизи изоэлектрической точки образуются, вероятно, более прочные и протяженные ГС, что может быть связано с возникновением более благоприятных условий для развития водородных связей на силанольных группах теперь уже незаряженной поверхности SIO2. Это некоторым образом аналогично случаю увеличения протяженности ГС при снижении степени диссоциации силанольных групп на поверхности кварца при приближении к изоэлектрической точке [24]. [c.178]

    Результаты исследования электроповерхностных свойств и устойчивости дисперсии аморфного кремнезема [514] и расчеты энергии взаимодействия частиц по теории ДЛФО показали, чт эта дисперсия более устойчива по сравнению с дисперсией кварца той же дисперсности. Наблюдаемые различия в устойчивости обеих систем при одном и том же составе дисперсионной среды (в том числе и при pH, соответствующих изоэлектрическому состоянию) объяснены разным вкладом структурной составляющей, т. е. структурными отличиями ГС у поверхности исследуемых частиц. [c.182]


    М растворе Na 104 при 25 °С, находится в диапазоне pH = 6,8 0,2). Для других твердых оксидов эта разность составляет в лучшем случае три единицы pH [21, с. 913-921[. Изоэлектрическая точка (ИЭТ) для дегидратированного образца Si02 находится при pH = 2,4, а для гидратированной поверхности pH равно 1,8. Отличие точки нулевого заряда от изоэлектрической точки (соответственно, и в величинах pH) состоит в том, что эти точки определяются разными способами. Если ИЭТ определяют методом электрофореза, и получаемое значение pH соответствует моменту, когда заряд вблизи плоскости скольжения отсутствует, то ТНЗ определяют по кривым титрования и фиксируют то значение pH, при котором на образование заряда на поверхности не расходуются ни кислота, ни основание. Поэтому, изменяя ионную силу, можно увеличить адсорбцию противоионов внутри слоя Штерна, находящегося очень близко к поверхности, то есть будет происходить адсорбция дополнительных гидроксилов. Суммарное число заряженных центров при этом увеличивается, но при электрофорезе заряд снаружи плоскости скольжения снижается, поэтому при добавлении соли ТНЗ и ИЭТ могут перемещаться в противоположных направлениях. В разбавленных растворах обе точки находятся очень близко друг от друга. [c.50]

    В изоэлектрической точке, отвечающей для амфотерных по своим свойствам поверхностей тому состоянию, когда число ионов разных знаков в пограничном слое одинаково и двойной слой исчезает, отсутствует и механизм для осуществления направленного потока жидкости. При возрастании концентрации электролита в растворе диффузный слой ионов сжимается и принимает структуру гельмгольцевского слоя, что также приводит к исчезновению механизма для передвижения жидкости, и электроосмос прекращается. Иллюстрацией этой закономерности являются результаты опытов Рэми (рис. 24). [c.50]

    Для объемных (гидр)оксидов кремния (монодисперсные сферические частицы диаметром 0.5 мкм, силохром С-120), алюминия (бемит), олова и железа (гетит) определена адсорбция потенциалопределяющих ионов (Г) и электрофоретической подвижности частиц (11) в зависимости от pH и концентрации фоновых электролитов (ЫаС1, КС1). Определены положения точки нулевого заряда (ТНЗ), изоэлектрической точки (ИЭТ) и рассчитаны величины электрокинетического потенциала ( -с учетом поляризации двойного электрического слоя (ДЭС). Из адсорбционных и элек-трокинетических измерений для исследованных (гидр)оксидов найдены константы диссоциации поверхностных групп, константы образования ионных пар, адсорбционные потенциалы потенциалопределяющих ионов и ионов фонового электролита, степени диссоциации поверхностных групп в ИЭТ и ТНЗ в рамках 2-рК модели заряжения оксидной поверхности. Показано, что использование 2-рК модели в сочетании с моделью ДЭС Грэма позволяет удовлетворительно описать экспериментальные данные только в случае использования переменной емкости ДЭС. [c.107]

    Важная особенность влияния на строение двойного электрического слоя сильно адсорбирующихся ионов заключается в том, что в этом случае может наблюдаться не только падение, но и рост (pd- и -потенциалов это происходит, если высокий адсорбционный потенциал присущ ко ион у вводимого электролита (см. рис. VII—4). С другой стороны, сильно адсорбирующиеся противоионы способны вызвать .перезарядку поверхности после того как с повышением концентрации добавляемого электролита заряд адсорбционной части слоя противоионов станет равен заряду поверхности, адсорбционные взаимодействия могут привести к дополнительной, сверхэкви-валентной адсорбции противоионов, так что фй-потенциал изменит знак одновременно с ним изменит знак и электрокинетический потенциал. Действительно, изучение электрокинетических явлений, например измерение скорости электрофореза, показывает, что по мере увеличения концентрации электролита происходит падение -потенциала, и при некотором значении концентрации, называемом изоэлектрической точкой, электрокинетический потенциал становится равным нулю (рис. VII—20, кривая /) никаких электрокинетических явлений при этом [c.208]

    Изоэлектрическая точка золя может быть изменена в результате адсорбции на иоверхности частиц полиамфолитов (ПАВ или высокомолекулярных соединений). Поскольку при значениях рИ среды, близких к изоэлектрической точке, золи, как правило, становятся неустойчивыми, адсорбционное модифицирование поверхиости частиц часю применяют для защиты их от коагуляции. Нри такой стабилизации поверхность частиц приобретает свойства адсорбата. При этом заряд частиц и изоэлектрическая точка зависят не только от природы стабилизатора, но и концентрации электролитов. [c.100]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива. Противоионы обмениваются на другие ионы того же знака. Повышение концентрации раствора приводит к вытеснению противоионов из диффузной в плотную часть двойного электрического слоя. То.лщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой концентрации раствора (примерно 0,1 н) все противоионы оказываются вытесненными в адсорбционный слой и С-потенциал становится равным нулю. В этом случае изменение межфазового потенциала от его максимального значения на поверхности твердой фазы до нулевого целиком происходит в пределах адсорбционного слоя. Такое состояние коллоидной мицеллы называют изоэлектрическим состоянием. [c.307]

    При продолжении титрования концентрация неосажденных хлорид-ионов в растворе уменьшается. Поэтому уменьшается также количество адсорбированных на поверхности осадка хлорид-ионов. Одновременно в растворе увеличивается концентрация ионов серебра, и наряду с хлорид-ионами на поверхности осадка адсорбируются также и эти ионы. Вследствие уменьшения количества адсорбированных хлорид-ионов и увеличения адсорбированных ионов серебра в ходе титрования заряд отдельных частиц твердой фазы уменьшается, В районе точки стехиометричности наступает такой момент, когда количества адсорбированных хлорид-нонов и ионов серебра одинаковы и частицы осадка становятся нейтральными. Это состояние называют изоэлектрической точкой. Последняя обычно не совсем совпадает с точкой стехиометричности вследствие того, что адсорбируемость обоих ионов неодинакова. Хлорнд-ионы, например, адсорбируются сильнее ионов серебра, поэтому при титровании хлорид-ионов раствором ионов серебра изоэлек-трическую точку достигают несколько за точкой стехиометричности. [c.230]

    За изоэлектрической точкой преимущественно адсорбируются ионы серебра, поэтому поверхность частиц хлорида серебра п)риоб-ретает положительный заряд. Если в раствор введен флуоресцеин, [c.230]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ 10 М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при адсорбции ПАВ. Гидрофилизация поверхности частиц ЗЮг за счет двуслойной адсорбции ЦТАБ [512] маловероятна вследствие низкой степени покрытия ЗЮг ионами ЦТАБ вблизи изоэлектрической точки. Из расчета энергии взаимодействия сферических частиц при С=ЫО М следует, что коагуляция частиц во вторичном минимуме (доли кТ) невозможна. Она происходит в первичном минимуме при преодолении энергетического барьера. Положительная структурная составляющая расклинивающего давления, ограничивающая его глубину, может быть обусловлена как взаимодействием ГС воды на поверхности ЗЮг, так и взаимодействием адсорбционных слоев ПАВ.. Можно ожидать, что при данной концентрации степень покрытия поверхности кварца молекулами ПАВ близка к 20% [513]. Как видно из рис. 10.3, дальнейшее увеличение концентрации ЦТАБ вновь приводит к ее стабилизации (участок г), что может быть связано с образованием геми-мицелл на поверхности кварца, а также увеличением положительного значения -по-тенциала частиц ЗЮг. [c.179]

    При седиметрическом титровании растворов катионов (например, ионов серебра) растворами анионов (например, хлорид-ионами) частицы осадка после изоэлектрической точки приобретают отрицательный заряд. В таких случаях в качестве адсорбционных индикаторов можно применять ряд органических красителей, катионы которых адсорбируются на отрицательно заряженной поверхности осадка, например родамин 6Ж  [c.231]

    Механизм действия адсорбционных индикаторов можно описать следующим образом. В процессе осаждения на поверхности осадка всегда адсорбируются катионы и анионы (первично адсорбированные ионы), входящие в состав кристаллической решетки, в зависимости от того, что находится в избытке. Вследствие этого, поверхность осадка приобретает заряд, под действием которого к частицам осадка из раствора притягиваются противоположно заряженные ионы (иротивоионы) индикатора, которые удерживаются слабее. Так, в процессе титрования галогенидов, до точки эквивалеитиости поверхность осадка имеет отрицательный заряд и анион индикатора отталкивается от осадка. При ирохождении изоэлектрической точки, первично адсорбированным ионом становится Ag, и анион индикатора адсорбируется на поверхности осадка в качестве иротивоиона, с измепепием цвета осадка  [c.36]

    Неравенство емкостей ф Су не вытекает из термодинамических соотношений, рассмотренных в разделе 1.12. Возможно, что оно является следствием разницы между адсорбцией заряженных компонентов в пленке и на поверхности раздела объемных фаз. Измерения Булавченко [158] показали, что в декановых пленках (ПАВ—сорбитан-0) С и Су совпадают только в изоэлектрической точке, где = 2Г, а в остальных случаях > Су. [c.146]

    II. 1.5. Метод Либиха Основан на фиксировании точки титрования но нросветлению раствора в изоэлектрической точке (близкой к точке эквивалентности) вследствие разрушения коллоидных частиц и укрупнения осадка. Как правило, точность этого метода невелика и зависит от наличия фоновых электролитов и характеристик поверхности раздела фаз осадок-раствор. [c.44]

    Для ионообменной хроматографии наибольшее значение имеют следующие характеристики вещества размер (масса) и форма молекул — с позиций легкости их проникновеипя в поры матрицы ионообменника и скорости диффузии в жидких фазах системы значения рК для ионов, изоэлектрической точки (р1) для цвиттерионов амфолитов, а также ход кривых их титрования. Весьма желательно иметь представление и о распределении ионогенных групп по поверхности макромолекул амфолита для оценки возможностей локальных взаимодействий с обменником или пространственного соответствия этого распределения и средних расстояний между ионогенными группами на поверхности обменника. [c.256]

    В изоэлектрической точке белковая молекула представляет собой цвиттер-иои, т. е. положительные и отрицательные заряды в молекуле взаимно уравновешиваются и суммарный заряд молекулы равен нулю растворимость и гидратация минимальны, отсутствует движение в электрическом поле. Изоэлектрическая точка может быть определена из кривой титрования, отражающей суммарное состояние ионизации молекулы. В случае глобулярных белков ионизируемые группы преимущественно локализова-, ны иа поверхности молекулы. Группы, находящиеся внутри или принимаю- щие участие в образовании водородных связей, могут быть зарегистрированы титрованием после денатурации. Кроме того, изоэлектрическая точка( может быть установлена путем определения минимума растворимости й [c.356]


Смотреть страницы где упоминается термин Поверхность точка изоэлектрическая: [c.133]    [c.179]    [c.196]    [c.63]    [c.437]    [c.185]    [c.300]    [c.209]    [c.250]    [c.251]    [c.133]   
Химия кремнезема Ч.1 (1982) -- [ c.913 ]




ПОИСК





Смотрите так же термины и статьи:

Изоэлектрическая точка



© 2024 chem21.info Реклама на сайте